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Several types of line search methods are documented in the literature and are well known for
unconstraint optimization problems. This paper proposes a modified line search method, which
makes use of partial derivatives and restarts the search process after a given number of iterations
by modifying the boundaries based on the best solution obtained at the previous iteration (or set of
iterations). Using several high-dimensional benchmark functions, we illustrate that the proposed
line search restart (LSRS) approach is very suitable for high-dimensional global optimization
problems. Performance of the proposed algorithm is compared with two popular global optimiza-
tion approaches, namely, genetic algorithm and particle swarm optimization method. Empirical
results for up to 2000 dimensions clearly illustrate that the proposed approach performs very well
for the tested high-dimensional functions. C© 2009 Wiley Periodicals, Inc.

1. INTRODUCTION

The objective of global optimization is to find the globally best solution of
(possibly nonlinear) models, in the (possible or known) presence of multiple local
optima. Formally, global optimization seeks global solution(s) of a constrained
optimization model.

In this paper, we assume the following: given a function f : � ⊂ �n → �:

— the optimization problem is unconstrained;
— f is nonlinear, continuous, and twice differentiable;
— the feasible region � is given by a set of lower and upper bounds on each variable, that

is, � = {mini ≤ xi ≤ maxi , i = l, . . . , n };
— and that the global minima lies within the interior of �.
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As mentioned by Gergel1 and as evident from other well-established works,2−8

these class of problems are of substantial interest. Even though there is a huge
amount of work dealing with global optimization, there are still not many power-
ful techniques to be used for dense high-dimensional functions. One of the main
reasons is the high-computational cost involved. Usually, the approaches are com-
putationally expensive to solve the global optimization problem reliably. Very often,
it requires many function evaluations and iterations and arithmetic operations within
the optimization code itself. For practical optimization applications, the evaluation
of f is often very expensive to compute and large number of function evaluations
might not be very feasible.9

Because of the practical demands, there were some attempts in trying to use
different methods to solve high-dimensional global optimization problems. One
solution is to use parallel global optimization methods.10 The parallel algorithm for
global optimization proposed by Hofinger et al.11 can approach functions having up
to 512 dimensions (according to Ref. 11, it took 3 days for the first 10 iterations).
The parallel particle swarm algorithm proposed by Schutte et al.12 works well for
some standard functions (e.g., Griewank and Corona test functions) and was tested
for 128 dimensions.

Among the existing metaheuristics for global optimization, we used two pop-
ular approaches for comparisons with the line search restart (LSRS) approach. The
selected metaheuristics, namely, genetic algorithms (GA) and particle swarm opti-
mization (PSO) are well established and found highly successful and suitable for
several classes of optimization problems. As evident from the scientific literature,
GA and PSO were improved and adapted in several ways so as to obtain some reason-
able results. In spite of all the success stories for several applications and revisions
proposed during the last several years, these techniques are still not very much
suitable for large-scale global optimization problems involving high dimensions.

There are impressive number of papers reporting results in applying these
techniques—either in their original form or in several improved and hybrid
versions.13−28,42−49

The paper is structured as follows: in Section 2 the modified LSRS technique
is presented. In Section 3 the two computational techniques used for comparisons,
namely, GA and PSO, are briefly introduced. Section 4 is dedicated to the numer-
ical experiments. We illustrate the performance for higher number of dimensions
(between 50 and 2000). Section 5 includes conclusions and further work ideas.

2. MODIFIED LINE SEARCH TECHNIQUE

Line search is a well-established optimization technique. The modification
proposed in this paper for the standard line search technique refers to step setting
and also the incorporation of a restart approach. To fine tune the performance, the
first partial derivative of the function to optimize is also made use of. The proposed
three modifications are summarized below and will be described in details in the
subsequent sections:
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1. The first modification refers to the inclusion of multistart principle within the search
process.

2. The second modification is related to the setting of the direction and step.
3. The third modification refers to the restarting of the line search method.

After a given number of iterations, the process is restarted by reconsidering
other arbitrary starting point (or other multiple arbitrary starting points), which is
generated by taking into account the results obtained at the end of previous set of
iterations. In the following subsection, the algorithm is presented in a structured
form.

2.1. Generation of the Starting Points

It is known that line search techniques uses a starting point. There are also
versions that allow the usage of multiple points, and the search will start separately
from each of these points. In the proposed approach, multiple arbitrary starting
points are used.

For a function of n variables (x1, x2, . . . , xn) and the domain of definition given
by

[min1, max1] × [min2, max2] × [minn, maxn]

where [mini , maxi] is the domain of ith variable, the starting point xi is randomly
generated between the considered limits given by [mini , maxi].

2.2. Direction and Step Settings

Initially, we performed several experiments to set an adequate value for the
direction. We used the standard value +1 or −1 and, for some functions the value
−1 was favorable for very good results. We also performed some experiments by
setting the direction value as being a random number between 0 and 1. Using
the random number helped to obtain overall very good performance for the entire
considered test functions. But usage of the value −1 for direction obtains almost the
same performance similar to that obtained with a random value. So, either of these
values (the random one and the value −1) may be used for better performance.

The step is set as follows:

αk = 2 + 3

2k2+1
,

where k refers to the iteration number.
The Line search() technique may be written as follows:

Line search()
et k = 1 (Number of iterations)
Repeat

for i = 1 to No of starting points
for j = 1 to No of variables
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pk= -1; //or p = random;
αk= 2+ 3

2k2+1

xk+1
ij = xk

ij + pk · αk

endfor
if f (xk+1

i )>f (xk

i
) then xk+1

i = xk
i .

Endfor
k = k+1
Until k = Number of iterations (apriori known).

Remarks

(i) The condition: if f (xk+1
i ) > f (xk

i ) then xk+1
i = xk

i allows us to move to the new generated
point only if there is an improvement in the quality of the function.

(ii) Number of iterations for which line search is applied is apriori known and is usually a
small number. In our experiments, we set the number of these iterations to 10 even for
high-dimensional problems.

(iii) When restarting the line search method (after the insertion of the restart technique), the
value of iterations number will again start from 1 (this should not be related to the value
of α after the first set of iterations (and after each of the following ones)).

2.3. Restart Insertion

To restart the algorithm, the best result obtained in the previous set of iterations
is taken into account and by following the steps given below:

1. Among all the considered points, the solution for which the objective function is obtaining
the best value is selected. If there are several such solutions, one of them is randomly
selected. This solution will be a multidimension point in the search space and denoted by
“x” for an easier reference.

2. For each dimension iof the point x, the first partial derivative with respect to this dimension
is calculated. This means the gradient of the objective function is calculated, which is
denoted by g. Taking this into account, the bounds of the definition domain for each
dimension is recalculated as follows:

if gi = ∂f

∂xi

> 0 then maxi = xi ;

if gi = ∂f

∂xi

< 0 then mini = xi

3. The search process is restarted by reinitializing a new set of arbitrary points (using
Generate starting points () procedure) but between the newly obtained boundaries
(between the new maxi or new mini).

2.4. General Line Search with Restart Procedure

The line search method presented in the previous subsections combined with
the restart technique as described above is expressed by using the following pseudo
code:
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General Line Search with Re-Start
Set t = 1;

Repeat
Generate starting points (max, min);
Line search (k);
Re start (new values for maxi and/or mini for each dimension will
be obtained);
t = t+1;

Until t = Number of applications of the re-start technique (a priori known).
Select the solution x* for which the value of the objective function is mini-
mum.
Print x*.

3. GENETIC ALGORITHMS AND PARTICLE SWARM
OPTIMIZATION ALGORITHMS

Because of the fact that these two techniques are now well-established and
very popular among the artificial intelligence/problem solving community, some of
the fundamental ideas are presented in this section with a focus on the algorithms
structure, which would help the reader to follow the experiments.

3.1. Genetic Algorithms

Genetic algorithms are a population-based search technique, using principles
from biological evolution that are transposed in a computational scheme. This tech-
nique was proposed by Holland29 in 1975 and was developed further and success-
fully applied in various domains. The basic components are solution representation,
population initialization, fitness function, and genetic operators (such as selection,
crossover, and mutation). The main idea is as follows: the genetic pool of a given
population potentially contains an approximate solution, to a given problem. During
reproduction and crossover, new genetic combination occurs and there is chance
to obtain a better solution (either than the ones that were combined or mutated
or better than all the existing ones in that pool). By repeating several times, these
recombinations between the potential solutions for the problem, usually a very good
approximation of the solution is obtained.30−32

Genetic Algorithm Scheme
Set t = 1;
Randomly initialize population P(t);
Repeat

Evaluate individuals from P(t);
Selection on P(t). Let P’(t) be the selected individuals;
Crossover on P’(t). Survival between parents and offspring.
Mutation on P’(t). Survival between parent and offspring.
t = t+1;
P(t) = P’(t-1);

Until t = Number of generations.
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Remarks:

(i) The selection procedure used is binary tournament.
(ii) Crossover and mutation are performed with a given probability.

(iii) Survival between parents and offspring after crossover will return as results
the best two individuals among the four (two parents and two offspring)
considered.

(iv) Survival between parents and offspring after mutation is made by direct
comparison (in terms of fitness function). The best one between parent and
offspring will be accepted.

3.2. Particle Swarm Optimization

Particle swarm optimization is also a population-based method, which can be
successfully applied for optimization. The concept of particle swarms, although
initially introduced for simulating human social behavior, has become very popular
these days as an efficient search and optimization technique. PSO, as it is called
now, does not require any gradient information of the function to be optimized, uses
only primitive mathematical operators and is conceptually very simple.

In PSO, a population of conceptual “particles” is initialized with random po-
sitions xi and velocities vi , and a function, f , is evaluated, using the particle’s
positional coordinates as input values. In an n-dimensional search space, x = (x1,
x2, x3, . . . , xn) and v = (v1, v2, v3, . . . , vn). Positions and velocities are adjusted,
and the function is evaluated with the new coordinates at each timestep. The best
position of the particle found during the search process—pbest—as well as the
position of the best particle from the entire swarm—gbest (global best)—is stored.
The basic update equations for the kth dimension of a current particle p current in
PSO at iteration t may be given as

vk(t + 1) = ωvk(t) + c1rand1(pbestk − p currentk(t))

+ c2rand2(gbestk − p curentk(t))

p currentk(t + 1) = p currentk(t) + vk(t + 1)

The variables rand1 and rand2 are random positive numbers, drawn from a uniform
distribution and defined by an upper limit rand max, which is a parameter of the
system. c1 and c2 are called acceleration constants, whereas ω is called inertia weight.
pbestk is the local best solution found so far by the particle, whereas gbestk represents
the positional coordinates of the fittest particle found so far in the entire community
(for dimension k). Once the iterations are terminated, most of the particles are
expected to converge to a small radius surrounding the global optima of the search
space.33−38,46 The core of the PSO algorithm used in our experiments is presented
below:
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Particle Swarm Optimization

Initialize the population of particles.
For each particle set its pbest.
Set the gbest.
Set t = 1;
Repeat

For each particle
update its current position using equations (1);

If the value of the function to optimize for the new
obtained particle is better than the initial one
Then keep the new obtained particle

Else keep the initial particle
Update pbest

Endfor
Update gbest;
t = t+1;

Until t = Number of iterations.

4. EXPERIMENTAL RESULTS

To demonstrate the performance of the proposed LSRS method, we present the
results obtained for a set of benchmark problems that are described in Subsection
4.2. We consider a high number of dimensions varying between 50 and 2000.

4.1. Performance Assessment

According to Baritompa and Hendrix,39 there are two criteria, which must
be taken into account: effectiveness and efficiency. The first one reflects whether
we reached what we wished (solution with a given approximation or so) and the
second one refers to the (computational) cost required to do this. One measure of
effectiveness can be given by the number of times the global optimum has been
reached by a certain algorithm. For this purpose, usually several repetitions of
the algorithm application are required. For measuring the efficiency, usually the
number of function evaluations used is considered. The convergence speed—which
is a measure of whether the solution in the next iteration is improved and how—can
also be considered as an efficiency criterion. To asses the performances of the new
proposed technique, performance graphs are used, and the empirical results are also
compared with genetic algorithms and particle swarm optimization algorithms. All
the algorithms including LSRS, GA, and PSO have been implemented using C++
Builder 6.0 and were run on a 2.4-GHz Intel Duo Core CPU, with a 2-GB RAM.

4.2. Test Functions

The proposed algorithm is tested by using a set of standard continuous test
functions,4,40 which are widely used in the literature and whose characteristics are
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diverse enough to cover many of the problems, which can arise in global optimization
problems as mentioned in Ref. 41.

Ackley function

f (x) = 20 + e − 20e
−0.2

√
1
n

n∑
i=1

x2
i − e

1
n

n∑
i=1

cos(2πxi )

Domain of definition: [−10, 10]n

Optimum point: x∗ = (0,0, . . . 0), f (x∗) = 0.
Levy function

f (x) = sin2(πy1) +
n−1∑
i=1

(yi − 1)2(1 + 10 sin2(πyi + 1))

+(yn − 1)2(1 + sin2(2πxn))

yi = 1 + xi − 1

4
, for i = 1, 2, . . . , n

Domain of definition: [−10, 10]n

Optimum point: x∗ = (1,1, . . . 1), f (x∗) = 0.

Quadric function

f (x) =
n∑

i=1

⎛
⎝ i∑

j=1

xj

⎞
⎠

2

Domain of definition: [−10, 10]n

Optimum point: x∗ = (1,1, . . . 1), f (x∗) = 0.

Rastrigin function

f (x) = 10 n +
n∑

i=1

x2
i

4000
−

n∏
i=1

cos

(
xi√
i

)
+ 1

Domain of definition: [−5.12, 5.12]n

Optimum point: x∗ = (0,0, . . . 0), f (x∗) = 0.

Rosenbrock function

f (x) =
n−1∑
i=1

[
100

(
x2

i − xi+1
)2 + (xi − 1)2

]
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Domain of definition: [−5, 10]n

Optimum point: x∗ = (1,1, . . . 1), f (x∗) = 0.

Schwefel function

f (x) =
n∑

i=1

|xi | +
n∏

i=1

|xi |

Domain of definition: [−10, 10]n

Optimum point: x∗ = (0, 0, . . . 0), f (x∗) = 0.

Sphere function

f (x) =
n∑

i=1

x2
i

Domain of definition: [−10, 10]n

Optimum point: x∗ = (0, 0, . . . 0), f (x∗) = 0.

Sum Squares function

f (x) =
n∑

i=1

ix2
i

Domain of definition: [−10, 10]n

Optimum point: x∗ = (0, 0, . . . 0), f (x∗) = 0.

4.3. The High-Dimensional Experiments

As reported in the scientific literature, it is evident that PSO and GA are good
candidates for a low number of dimensions. All the algorithms were also tested
for higher number of dimensions. We considered 50, 100, 250, 500, 750, and 1000
dimensions for all the test functions. Also, we test the performance of LSRS for
2000 dimensions, but comparisons with PSO and GA are not reported because of
the poor results, which are evident from the results obtained for 1000 dimensions.
Table I presents the values of the main parameters used by the three techniques
involved in experiments.

4.3.1. Results and Comparisons

Results for 50, 100, 500, and 1000 dimensions obtained by all the three tech-
niques at the end of search process are presented in Tables II–V, respectively. The
best and average solution and standard deviation are displayed. Results obtained by
LSRS for 2000 dimensions are presented in Table VI. The convergence of LSRS is
illustrated in Figures 1–5 for 50, 100, 500, 1000, and 2,000 dimensions, respectively.
The best objective function value obtained at the end of each restart application is
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Table I. Parameters used by LSRS, PSO, and GA for 50, 100, 250, 500, 750, 1000, and 2000
dimensions.

Parameter values

No. of dimensions

Parameter 50 100 250 500 750 1000 2000

LSRS
No. of starting arbitrary points 500 500 500 500 500 500 500
No. of restarting (reinitialization) 50 50 100 100 100 100 100
No. of iterations per each 10 10 10 10 10 10 10

restarting phase
Genetic algorithm

Population size 500 500 500 500 500 500
No. of generations 20,000 20,000 20,000 20,000 20,000 20,000
Mutation probability 0.9 0.9 0.9 0.9 0.9 0.9
Crossover probability 0.5 0.5 0.5 0.5 0.5 0.5

Particle swarm optimization
No. of particles 500 500 500 500 500 500
No. of iterations 20,000 20,000 20,000 20,000 20,000 20,000
c1, c2 2 2 2 2 2 2

depicted. In Figure 6, a graphical comparison of the convergence for all the three
techniques during the first 1000 iterations for functions having 1000 dimensions is
provided.

Table II. The performance for 50 dimensions.

Function

Sum
Approach Ackley Levy Quadric Rastrigin Rosenbrock Schwefel Sphere Squares

GA
Best 2.882 0.327 6.105E+3 104.86 55.34 10.99 6.544 425.57
Average 3.38 0.327 6.113E+3 122.4 55.34 13.46 15.384 431.05
Standard 0.477 0 545.08 14.99 0 1.896 8.111 39.454

deviation
PSO

Best 5.045 11.93 3.02E+4 198.86 1.58E+4 29.491 59.91 1002.2
Average 6.055 18.88 7.81E+4 247.45 5.9E+4 46.80 100.16 2116.6
Standard 1.017 8.38 3.43E+4 52.01 5.23E+4 10.163 36.73 786.29

deviation
LSRS

Best −6.5E−19 2.9E−39 6.27E−19 0.0 2.47E−28 1.86E−11 1.34E−22 9.86E−21
Average −6.5E−19 2.9E−39 2.33E−18 0.0 1.38E−18 1.91E−11 1.38E−18 1.42E−18
Standard 0 0 8.11E−19 0 1.29E−18 4.15E−12 1.29E−18 1.25E−18

deviation
Actual 0 0 0 0 0 0 0 0

optimum
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Table III. The performance for 100 dimensions.

Function

Sum
Approach Ackley Levy Quadric Rastrigin Rosenbrock Schwefel Sphere Squares

GA
Best 4.333 0.6509 2.2E+5 333.5 111.82 37.91 56.50 3.12E+3
Average 4.483 0.6509 2.2E+5 348.37 2.74E+4 40.07 64.83 3.13E+3
Standard 0.353 0 1.96E+5 32.76 8.61 3.78 9.79 279.63

deviation
PSO

Best 6.01 45.72 4.43E+5 642.57 1.05E+5 92.07 221.21 6.02E+3
Average 6.78 55.72 7.81E+5 707.86 2.19E+5 104.86 249.20 9.99E+3
Standard 0.83 10.39 3.04E+5 98.20 9.59E+4 15.81 32.86 3.52E+3

deviation
LSRS

Best −6.5E−19 2.9E−39 9.2E−16 0 5.83E−28 7.81E−19 5.34E−19 4.68E−18
Average −6.5E−19 2.9E−39 1.15E−15 0 6.94E−16 3.98E−10 6.94E−16 6.98E−16
Standard 0 0 4.38E−16 0 6.63E−16 4.97E−10 6.63E−16 6.58E−16

deviation
Actual 0 0 0 0 0 0 0 0

optimum

4.3.2. Discussions on the Performance and Results

As evident from the results presented in tables above, LSRS converges very
fast and obtains very accurate results. It can be observed that there are not many dif-
ferences between the parameters value settings for different number of dimensions.

Table IV. The performance for 500 dimensions.

Function

Sum
Approach Ackley Levy Quadric Rastrigin Rosenbrock Schwefel Sphere Squares

GA
Best 7.18 3.24 1.25E+8 4.58E+3 563.638 598.12 1.19E+3 4.07E+5
Average 7.21 3.33 1.25E+8 4.59E+3 566.62 600.51 1.20E+3 4.07E+5
Standard 0.01 0.244 1.12E+7 409.93 63.22 53.21 107.67 3.63E+4

deviation
PSO

Best 8.12 544.57 1.41E+8 6.11E+3 2.43E+6 884.67 211.75 4.86E+5
Average 8.14 546.02 1.47E+8 6.13E+3 2.56E+6 891.19 2180.35 5.22E+5
Standard 0.37 42.36 5.61E+7 11.20 2.17E+5 6.55 31.18 3.55E+4

deviation
LSRS

Best −4.3E−19 2.9E−39 2.12E−11 0 3.4E−27 2.91E−19 4.54E−16 4.05E−35
Average −4.3E−19 2.9E−39 4.31E−11 0 2.61E−11 4.08E−19 9.0E−16 7.96E−35
Standard 0 0 1.14E−11 0 2.32E−11 3.62E−20 1.52E−16 1.95E−35

deviation
Actual 0 0 0 0 0 0 0 0

optimum
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Table V. The performance for 1000 dimensions.

Function

Sum
Approach Ackley Levy Quadric Rastrigin Rosenbrock Schwefel Sphere Squares

GA
Best 7.86 6.47 6.28E+8 1.073E+4 1.12E+3 1.49E+3 3.44E+3 2.16E+6
Average 7.87 7.17 6.28E+8 1.075E+4 1.12E+3 1.492E+3 3.45E+3 2.16E+6
Standard 0.0056 1.07 66.81 482.31 10.8 67.0 155.21 9.72E+4

deviation
PSO

Best 8.91 1.61E+3 1.5E+9 1.40E+4 6.46E+6 3.9E+19 5.24E+3 2.65E+6
Average 9.02 1.62E+3 1.61E+6 1.40E+4 6.58E+6 4.1E+47 5.50E+3 2.66E+6

Standard 0.10 10.97 9.46E+7 20.2 1.86E+5 9.2E+48 2.7E+2 8.94E+3
deviation

LSRS
Best 1.3E−18 2.9E−39 5.34E−30 0 6.84E−27 9.30E−18 7.97E−19 3.78E−33
Average 1.3E−18 2.9E−39 1.38E−29 0 7.41E−27 1.12E−17 1.25E−18 7.35E−33
Standard 4.8E−33 0 3.68E−30 0 1.66E−28 7.33E−19 2.05E−19 1.49E−33

deviation
Actual 0 0 0 0 0 0 0 0

optimum

Even for 2000 dimensions, the same number of restarting and the same number of
iterations for each restart were used. Empirical and graphical comparisons with GA
and PSO also clearly indicate the big difference between these approaches in terms
of quality of solutions and speed of convergence.

For the Rastrigin test function, for example, LSRS obtained the clear 0 for min-
imum and all the starting points converged to this value, even for 2000 dimensions.

It is obvious that the greater the number of restarts, the faster the convergence
and the more accurate the results. A greater number of restarts will increase the
computational cost (derivatives to be involved and boundaries are to be modified
accordingly). But still the computational cost is very less compared with other two
techniques (GA and PSO). It takes about 1 min for LSRS to converge for functions
having 2000 dimensions while for GA and PSO, it takes few hours even for 1000

Table VI. The performance for 2000 dimensions.

Function

Sum
Approach Ackley Levy Quadric Rastrigin Rosenbrock Schwefel Sphere Squares

LSRS
Best −4.3E−19 2.9E−39 9.37E−8 0 1.40E−26 2.41E−17 9.97E−34 7.58E−31
Average −4.3E−19 2.9E−39 1.69E−7 0 1.48E−26 3.08E−17 2.35E−33 1.27E−30
Standard 9.6E−35 0 3.42E−8 0 2.44E−28 2.31E−18 6.91E−34 2.02E−31

deviation
Actual 0 0 0 0 0 0 0 0

optimum
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Figure 1. LSRS convergence for 50 dimensions.

dimensions (due to the great number of iterations that these techniques should use
to improve the performance). In terms of number of function evaluations, LSRS
is more computationally economical than PSO and GA (we refer here to objective
function as well as derivatives).
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Figure 2. LSRS convergence for 100 dimensions.

5. CONCLUSIONS

A new multidimensional method for solving unconstraint global optimization
problems is proposed in this paper. We introduced a modified line search technique
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Figure 3. LSRS convergence for 500 dimensions.

called LSRS. The modified classical mathematical technique, which incorporates the
multistart method and using the restarting techniques, is found to be computationally
efficient for large dimensional functions optimization problems. The computational
comparisons with two well-known global optimization techniques—GA and PSO—
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Figure 4. LSRS convergence for 1000 dimensions.

clearly illustrate the superiority of the proposed approach and its independence for
the number of dimensions involved.

The LSRS technique makes use of gradient information, which makes it to
be restricted to a special class of functions (continuous and differentiable). But
it appears to be very efficient for multidimensional optimization problems. We
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Figure 5. LSRS convergence for 2000 dimensions.

presented the empirical results and graphical illustrations for functions having up to
2000 variables. The proposed technique can be used without any modifications for a
higher number of variables. We also intent to develop and adapt the LSRS technique
so that it can be further applied for constraint optimization problems, which are also
of great interest in some practical optimization problems.

International Journal of Intelligent Systems DOI 10.1002/int



438 GROSAN AND ABRAHAM

Figure 6. Comparison of LSRS, GA, and PSO for 1000 dimensions for the first 1000 iterations.
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