
Programming Risk Assessment Models for Online Security Evaluation Systems

Ajith Abraham1, Crina Grosan1 2, Vaclav Snasel 1 3

1Machine Intelligence Research Labs, MIR Labs, http://www.mirlabs.org
2Babes-Bolyai University, Cluj-Napoca, Romania

3VSB-Technical University of Ostrava, Czech Republic

Abstract

Risk assessment is often done by human experts, because
there is no exact and mathematical solution to the problem.
Usually the human reasoning and perception process can-
not be expressed precisely. This paper propose a genetic
programming approach for risk assessment. Preliminary
results indicate that genetic programming methods are ro-
bust and suitable for this problem when compared to other
risk assessment models.

1 Introduction

Risk analysis [8][11][12]is fundamentally all about es-
tablishing probabilities. Different people have different
opinions about risk and the association of its dependent
variables and in our previous research we have used fuzzy
logic to model risk [6]. In the DIPS framework [6], the
risk analysis was done using threat levels, vulnerability and
asset value [5]. We consider that all components within a
network scenario falls into one of these categories, and each
has attributes, or derived factors, that contribute positively
or negatively to risk.

Haslum et al. [6] used a fuzzy logic approach to model
the risk assessment problem in intrusion detection systems.
Further the authors [7] used a neuro-fuzzy learning method
to optimize the performance of the fuzzy risk models.

Genetic programming techniques have been successfully
applied to various security problems [1], [2], [4]. In this pa-
per, we approach the risk assessment problem using a vari-
ant of genetic programming named multi-expression pro-
gramming, which is presented in Section 3. In order to
test the performances of genetic programming on risk as-
sessment problem we performed some experiments as illus-
trated in Section 4. Results obtained by the genetic pro-
gramming approach are compared with a hybrid fuzzy con-
troller approach [6]. A set of conclusions are drawn towards
the end of the paper.

2 Risk Assessment

Different people have different opinions about risk and
the association of its dependent variables, and various soft
computing tools provide an excellent framework to model
risk. In our previous research [6], the risk analysis was mod-
eled using threat levels, vulnerability and asset value [5].

Threat level is modeled as the frequency of at-
tacks/intrusions, the probability that an intruder is being
successful in overcoming protective controls and gains ac-
cess to act against the organization or assets and the type
and severity of attacks.

Vulnerability may be defined as the probability that an
asset will be unable to resist the actions of an intruder.
Vulnerability exists when this probability exceeds a given
threshold. This may be because of weaknesses in software
or hardware, missing software patches and so on. Vulner-
ability is modeled as (1) threat capability and (2) system
threat resistance.

Asset may be defined as any data, device, or other com-
ponent of the environment that supports information-related
activities, which can be affected in a manner that result in
loss. To determine asset loss could be one of the hardest
tasks of analyzing risk. It is very difficult to put a precise
value on the various types of assets, and there may be more
than one value or liability characteristic. Complex relation-
ships might exist between the different forms of loss and
many factors determine loss magnitude. Asset value/loss
is modeled using four variables: (1) cost (2) criticality (3)
sensitivity and (4) recovery.

The overall architecture for asset risk management is
summarized in Figure 1 [6].

3 Multi-Expression programming

A Genetic Programming (GP) chromosome generally
encodes a single expression (computer program). By con-
trast, a Multi Expression Programming (MEP) chromosome
encodes several expressions. The best of the encoded solu-
tion is chosen to represent the chromosome (by supplying

1

Threat level

Asset risk
assessment

Vulnerability

Asset value

Intrusion
frequency

Probability for
threat success

Severity

Threat
capability

Threat
resistance

Cost

Criticality

Sensitivity

Recovery

Figure 1. Generic structure of the risk assess-
ment model

the fitness of the individual). The MEP chromosome has
some advantages over the single-expression chromosome
especially when the complexity of the target expression is
not known. This feature also acts as a provider of variable-
length expressions. Other techniques (such as Grammatical
Evolution (GE) [13] or Linear Genetic Programming (LGP)
[3]) employ special genetic operators (which insert or re-
move chromosome parts) to achieve such a complex func-
tionality. Multi Expression Programming (MEP) technique
([9], [10]) description and features are presented in
what follows.

3.1 Solution Representation

MEP genes are (represented by) substrings of a variable
length. The number of genes per chromosome is constant.
This number defines the length of the chromosome. Each
gene encodes a terminal or a function symbol. A gene
that encodes a function includes pointers towards the func-
tion arguments. Function arguments always have indices of
lower values than the position of the function itself in the
chromosome. The proposed representation ensures that no
cycle arises while the chromosome is decoded (phenotyp-
ically transcribed). According to the proposed representa-
tion scheme, the first symbol of the chromosome must be
a terminal symbol. In this way, only syntactically correct
programs (MEP individuals) are obtained.

An example of chromosome using the sets F= {+, *}
and T= {a, b, c, d} is given below:

1: a
2: b
3: + 1, 2
4: c
5: d
6: + 4, 5
7: * 3, 6
The maximum number of symbols in MEP chromosome

is given by the formula:
Number of Symbols = (n+1) * (Number of Genes – 1) +

1,
where nis the number of arguments of the function with the
greatest number of arguments.

The maximum number of effective symbols is achieved
when each gene (excepting the first one) encodes a function
symbol with the highest number of arguments. The mini-
mum number of effective symbols is equal to the number
of genes and it is achieved when all genes encode terminal
symbols only.

The translation of a MEP chromosome into a computer
program represents the phenotypic transcription of the MEP
chromosomes. Phenotypic translation is obtained by pars-
ing the chromosome top-down. A terminal symbol specifies
a simple expression. A function symbol specifies a complex
expression obtained by connecting the operands specified
by the argument positions with the current function symbol.

For example, genes 1, 2, 4 and 5 in the previous exam-
ple encode simple expressions formed by a single terminal
symbol. These expressions are:

E1 = a,
E2 = b,
E4 = c,
E5 = d,
Gene 3 indicates the operation + on the operands located

at positions 1 and 2 of the chromosome. Therefore gene
3 encodes the expression: E3 = a + b. Gene 6 indicates
the operation + on the operands located at positions 4 and
5. Therefore gene 6 encodes the expression: E6 = c + d.
Gene 7 indicates the operation * on the operands located at
position 3 and 6. Therefore gene

7 encodes the expression: E7 = (a + b) * (c + d). E7 is
the expression encoded by the whole chromosome.

There is neither practical nor theoretical evidence that
one of these expressions is better than the others. This is
why each MEP chromosome is allowed to encode a number
of expressions equal to the chromosome length (number of
genes). The chromosome described above encodes the fol-
lowing expressions:

E1 = a,
E2 = b,
E3 = a + b,

E4 = c,
E5 = d,
E6 = c + d,
E7 = (a + b) * (c + d).
The value of these expressions may be computed by

reading the chromosome top down. Partial results are com-
puted by dynamic programming and are stored in a conven-
tional manner.

Due to its multi expression representation, each MEP
chromosome may be viewed as a forest of trees rather than
as a single tree, which is the case of Genetic Programming.

3.2 Fitness Assignment

As MEP chromosome encodes more than one problem
solution, it is interesting to see how the fitness is assigned.

The chromosome fitness is usually defined as the fitness
of the best expression encoded by that chromosome.

For instance, if we want to solve symbolic regression
problems, the fitness of each sub-expression Ei may be
computed using the formula:

f(Ei) =
n∑

k=1

|ok,i − wk|
where ok,i is the result obtained by the expression Ei for

the fitness case kand wk is the targeted result for the fitness
case k. In this case the fitness needs to be minimized.

The fitness of an individual is set to be equal to the lowest
fitness of the expressions encoded in the chromosome.

4 Experimental Results

We used the same network model as illustrated in Figure
2 to have performance comparisons [6]. The sample net-
work consists of four different assets; a router, a public web
server, a file server, and a database. Five IDS Agents de-
noted by IDS1, . . . , IDS5 are deployed in the network.The
attack category used for the risk assessment is based on in-
puts from the IDS agents and this value is used to assign
values to eight of the nine input variables. All the 9 input
variable values and the output variable (risk assessment) are
scaled between 0-1.

4.1 Results obtained by MEP

Parameters used by MEP are presented in Table 1. The
best and worst results obtained in 20 independent runs are
displayed in Table 2. In order to compare the MEP perfor-
mance, we considered the results obtained by the Hierarchi-
cal Neuro-Fuzzy Learning approach (HiNFRA) [6].

Some more detailed explanations related to MEP results
are provided as follows: the errors obtained by the best and
worst individuals are depicted in Figures 3 and 4. Figures 5-
8 depict the comparison between target and obtained results

for both training and test data obtained in the best and in the
worst runs.

Table 1. Parameters used by MEP
Parameter Value
Number of iterations 100
Population size 20
Crossover probability 0.8
Number of mutations per chromosome 2
Functions used +. -, *, /, sin,

cos, tan, exp,
ln, log, pow

Figure 3. The evolution of the error for the
training data set obtained in the worse run.

The MEP program obtained by the best individual is as
follows:

(cos(exp(1 / (log10(x[5])) + x[0]))) * (tan(1 /
(exp(cos((tan(x[5])) * x[0])))));

The MEP program obtained by the worse individual is as
follows:

sin((cos(x[7] - (sin(tan(x[0]) + fabs(x[0]))))) *
(sin(pow(1 / tan(cos((fabs(x[0])) * x[5])), 2))));

It is to be noted that, not all 9 variables are required for
building the MEP based risk assessment models. For exam-
ple, the best individual used only 3 input variables, while
the worst individual required just 2 input variables. So the
MEP approach also helps in considerable feature reduction,
which is very important for building online, light risk as-
sessment models that can be implemented in mobile sensors
etc.

Compared to the Neuro-fuzzy model, the developed GP
model also has a comparable Root Mean Squared Error
(RMSE) for the test data set. The best program obtained

Figure 2. Experimental network for risk assessment

Figure 4. The evolution of the error for the
training data set obtained in the best run.

Figure 5. The results (targeted and obtained)
for the training data obtained in the worse run.

Figure 6. The results (targeted and obtained)
for the test data obtained in the worse run.

Figure 7. The results (targeted and obtained)
for the training data obtained in the best run.

Table 2. The values of error and root mean
square error (RMSE) obtained in the best and
worse runs for training and test data. Results
obtained by HiNFRA.

Data
MEP HiNFRA
Error RMSE RMSE
Worse run

Training data 0.7438 0.0690
Test data 0.4854 0.6794

Best run
Training data 0.4616 0.0385 0.0593
Test data 0.3781 0.1896 0.3169

Figure 8. The results (targeted and obtained)
for the test data obtained in the best run.

is obtaining better results than the neuro-fuzzy approach
which makes it very suitable for the risk assessment prob-
lem.

5 Conclusions

This paper presented a detailed implementation of
Genetic Programming based Risk Assessment Model
(GePRA) to aid the decision making process. The proposed
model has been illustrated in an intrusion detection system.
Preliminary results indicate that genetic programming ap-
proach could work very well for the risk assessment prob-
lem. Compared to our previous [6] research, where the
fuzzy model was mainly based on expert knowledge, the
implementation of GePRA is fairly easy and obtains a more
simple, light weight (just few lines of codes) and an adap-
tive risk assessment model.

References

[1] A. Abraham and C. Grosan, Evolving Intrusion De-
tection Systems, Genetic Systems Programming, Nadia
Nedjah et al. (Eds.), Studies in Computational Intelli-
gence, Springer Verlag Germany, ISBN: 3-540-29849-
5, pp. 57-79, 2006

[2] A. Abraham, C. Grosan and C. Martin-Vide, Evolu-
tionary Design of Intrusion Detection Programs, Inter-
national Journal of Network Security, Vol.4, No.3, pp.
328-339, 2007

[3] Brameier M. and Banzhaf W, Explicit control of diver-
sity and effective variation distance in Linear Genetic
Programming. In Proceedings of the fourth European

Conference on Genetic Programming, Springer-Verlag
Berlin, 2001.

[4] C. Grosan, A. Abraham and S. Y. Han, MEPIDS:
Multi-Expression Programming for Intrusion Detec-
tion System, International Work-conference on the In-
terplay between Natural and Artificial Computation,
(IWINAC’05), Spain, Lecture Notes in Computer Sci-
ence, LNCS 3562, J. Mira and J.R. Alvarez (Eds.),
Springer Verlag, Germany, pp. 163-172, 2005

[5] J. Jones. An introduction to factor analysis of informa-
tion risk (fair). Norwich Journal of Information Assur-
ance , 2(1):67, 2006.

[6] K. Haslum, A. Abraham and S. Knapskog, HiNFRA:
Hierarchical Neuro-Fuzzy Learning for Online Risk
Assessment, Second Asia International Conference on
Modeling and Simulation, AMS 2008, IEEE Com-
puter Society Press, USA, ISBN 978-0-7695-3136-6,
pp. 631-636, 2008

[7] K. Haslum, A. Abraham and S. Knapskog, Fuzzy On-
line Risk Assessment for Distributed Intrusion Predic-
tion and Prevention Systems, Tenth International Con-
ference on Computer Modeling and Simulation, UK-
SiM/EUROSiM 2008, Cambridge, UK, IEEE Com-
puter Society Press, USA, ISBN 0-7695-3114-8, pp.
216-223, 2008.

[8] D. J. Landoll, The Security Risk Assessment Hand-
nook: A Complete Guide for Performing Security Risk
Assessments, Taylor & Francis, 2006

[9] Oltean M. and Grosan C., A Comparison of Several
Linear GP Techniques, Complex Systems, Vol. 14, No.
4, pp. 285-313, 2004.

[10] Oltean M. and Grosan C., Evolving Evolutionary Al-
gorithms using Multi Expression Programming. Pro-
ceedings of The 7 thEuropean Conference on Artificial
Life, Dortmund, Germany, pp. 651-658, 2003

[11] AI. Passori, Selecting the Risk Assessment
Method of Choice, META Group, July 21, 2004.
http://searchcio.techtarget.com/originalContent/0,289142,
sid19 gci994851,00.html

[12] T.R. Peltier, Information Security Risk Analysis, pp.
2346. Auerbach Publications, 2001.

[13] C. Ryan C. J.J. Collins and M. ONeill. Gramatical
Evolution: Evolving programs for an arbitrary lan-
guage, In Proceedings of the first European Workshop
on Genetic Programming, Springer-Verlag, Berlin,
1998

