
A Modified Differential Evolution Algorithm and Its Application to Engineering
Problems

Musrrat Ali and Millie Pant
Department of Paper Technology

Indian Institute of Technology Roorkee, Saharanpur
campus, Saharanpur, India.

E-mail: {musrrat.iitr, millidma}@gmail.com

Ajith Abraham
Machine Intelligence Research Labs (MIR Labs),
Scientific Network for Innovation and Research

Excellence, P.O. Box 2259, Auburn,
Washington-98071-2259, USA.
E-mail: ajith.abraham@ieee.org

Abstract—In the present study a Modified Differential
Evolution (MDE) algorithm is proposed. This algorithm is
different in three ways from basic DE. For initialization it
utilizes opposition-based learning while in basic DE uniform
random numbers serve this task. Secondly, in basic DE mutant
individual is random while in MDE it is tournament best and
finally MDE utilizes only one set of population as against two
sets as used in basic DE. The performance of proposed
algorithm is investigated and compared with basic differential
evolution. The experiments conducted shows that proposed
algorithm outperform the basic DE algorithm in all the
benchmark problems and real life applications

Keywords: differential evolution, mutation operator,
opposition based learning.

I. INTRODUCTION
Differential evolution, proposed by Storn and Price in

1995 [1] is a relatively new optimization technique
compared to evolutionary algorithms (EAs) such as Genetic
Algorithms [2], Evolutionary Strategies [3], and
Evolutionary Programming [4]. Within a short span of
around thirteen years, DE has emerged as one of the most
popular techniques for solving optimization problems.
However, it has been observed that the convergence rate of
DE do not meet the expectations in cases of highly
multimodal problems. Several variants of DE have been
proposed to improve its performance. Some of the recent
versions include greedy random strategy [5], preferential
mutation operator [6], self adaptive DE [7], Trigonometric
DE [8], opposition based DE [9], neighborhood search DE
[10], Parent Centric DE [11], modified differential evolution
[12], differential evolution with random localization [13]
etc. several recent versions of DE can be found in [14].

In all the above mentioned versions of DE, other than
[9], modifications are done in mutation or in update
processes.

The proposed MDE algorithm is inspired by three ideas;
(1) use of opposition based learning to generate the initial
population (2) use of tournament best process to generate
mutant vector to explore the region around the tournament
best individual xtb (say) for each mutated point and finally
(3) use of a single set population in contrast to the two set
population as in basic DE.

The concept of opposition based learning (OBL) was
first given in [9] to generate the initial population for a basic

DE algorithm. The main idea behind OBL is the
simultaneous consideration of an estimate and its
corresponding opposite estimate in order to achieve a better
approximation for the current candidate solution. In fact, a
mathematical proof has been proposed to show that, in
general, opposite numbers to the initial set of random
numbers are more likely to be closer to the optimal solution
than purely random one [15]. Use of a single set of
population for DE was suggested in [12] where it was
shown use of a single set population helps in reducing the
computational time of the DE algorithm.

Motivated by the successful implementation of the
above mentioned modifications we decided to club these
features together to develop a modified algorithm which we
have named as modified DE or MDE.

The remainder of the paper is structured as follows.
Section II describes the basics Differential Evolution.
Section III presents the proposed MDE. Experimental
settings are given in Section IV. Benchmark problems and
real life application problems are listed in Section V. Section
VI provides comparisons of results. Finally the paper is
concluded in section VII

II. DIFFERENTIAL EVOLUTION
Throughout the present study we shall follow

DE/rand/1/bin version of DE and shall refer to it as basic
version. This particular scheme is briefly described as:

DE starts with a population of NP candidate solutions:
Xi,G, i = 1, . . . ,NP, where the index i denotes the population
and G denotes the generation to which the population
belongs. The three main operators of DE are mutation,
crossover and selection.

 Mutation: The mutation operation of DE applies the
vector differentials between the existing population
members for determining both the degree and direction of
perturbation applied to the individual subject of the
mutation operation. The mutation process at each generation
begins by randomly selecting three individuals {Xr1, Xr2,
Xr3} in the population set of (say) NP elements. The ith

perturbed individual, Vi,G+1, is generated based on the three
chosen individuals as follows:

 Vi,G+1 = Xr3,G + F * (Xr1,G − Xr2,G) (1)
Where, i = 1. . . NP, r1, r2, r3 ∈ {1. . . NP} are randomly

selected such that r1 ≠ r2 ≠ r3 ≠ i,
F is the control parameter such that F ∈ [0, 1+].

2009 International Conference of Soft Computing and Pattern Recognition

978-0-7695-3879-2/09 $26.00 © 2009 IEEE

DOI 10.1109/SoCPaR.2009.48

202

2009 International Conference of Soft Computing and Pattern Recognition

978-0-7695-3879-2/09 $26.00 © 2009 IEEE

DOI 10.1109/SoCPaR.2009.48

196

 Crossover: once the mutant vector is generated, the
perturbed individual, Vi,G+1 = (v1,i,G+1, . . . , vn,i,G+1), and the
current population member, Xi,G = (x1,i,G, . . . , xn,i,G), are
then subject to the crossover operation, that finally generates
the population of candidates, or “trial” vectors,Ui,G+1 =
(u1,i,G+1, . . . , un,i,G+1), as follows:

, . 1
, . 1

, .

j i G j r
j i G

j i G

v if rand C j k
u

x otherwise
+

+

≤ ∨ =⎧
= ⎨
⎩

 (2)

Where, j = 1. . . n, k ∈ {1, . . . , n} is a random
parameter’s index, chosen once for each i. The crossover
rate, Cr ∈ [0, 1], is set by the user.

 Selection: The selection scheme of DE also differs
from that of other EAs. The population for the next
generation is selected from the individual in current
population and its corresponding trial vector according to
the following rule:

. 1 . 1 .
. 1

.

() ()i G i G i G
i G

i G

U if f U f X
X

X otherwise
+ +

+

≤⎧
= ⎨
⎩

 (3)

Thus, each individual of the temporary (trial) population
is compared with its counterpart in the current population.
The one with the lower objective function value will survive
from the tournament selection to the population of the next
generation. As a result, all the individuals of the next
generation are as good as or better than their counterparts in
the current generation. In DE trial vector is not compared
against all the individuals in the current generation, but only
against one individual, its counterpart, in the current
generation.

III. PROPOSED DE ALGORITHM
In this section we describe the proposed MDE, which

uses the concepts of opposition based learning, random
localization and one population set. The basic operators of
MDE are same as basic DE but still it is different from it
three points:

1. MDE differs from basic DE in the initialization phase
where MDE utilizes opposition based learning
method while DE uses uniform random numbers for
initialization of population.

2. In mutation step MDE uses best individual of three
points as mutant individual while in DE it is random
(there is an equal chance of all these three for being
selected as mutant individual).

3. MDE maintain one population set while DE
maintains two population sets, one current population
and second advanced population (for next
generation). The population is updated as the better
individual is found. Also the newly found individual
can take part in generation of new individual in
current generation.

A point to point comparison of two algorithms is given in
Table I.

IV. EXPERIMENTAL SETUP
In order to make a fair comparison of MDE and basic

DE, we have used C++ rand () function to generate initial
population for both the algorithms. The number of

individuals in the population is taken 10*n. Value scaling
factor F is taken as 0.5 which is neither too high nor low and
therefore maybe considered as a good initial choice. Very
small values of crossover constant Cr makes the
convergence very slow whereas large values of Cr may end
up in premature convergence. In the present study we have
taken Cr =0.5. All the algorithms are executed on a PIV PC,
using DEV C++, thirty times for each problem. In every
case, a run was terminated when the function values of all
points in population S were identical to an accuracy of five
decimal places, i.e., ห݂݉ܽݔ െ ݂݉݅݊ห ൑ 10െ4 or when the
maximum number of function evaluations (NFE =106) was
reached.

V. BENCHMARK PROBLEMS
The performance of the proposed algorithm is tested on

a set of ten benchmark and two application problems taken
from literature [9]. First five functions fEP, fCB6, fGP, fH3 and
fCV are with fixed dimension while second five fRB, fACK, fSWF,
fGW and fZA are scalable in nature. Scalable problems are
tested for dimensions 10, 30 and 50. Real life application
problem is taken from [16].

VI NUMERICAL RESULTS AND COMPARISONS

A. Comparison between DE and MDE

In this section we compare MDE with the basic DE
algorithm in terms of average fitness of function values,
standard deviation, and t- values for which the results are
listed in Table II. For scalable problems the dimension is
taken as n=30. Table III provides number of function
evaluations (NFE), percentage improvement in terms of
number of functions evaluations and average time taken for
the execution of algorithms. As it is clear from the Table II
that in term of fitness function value and standard deviation
both the algorithms give more or less similar results
although in some cases MDE performs slightly better than
classical DE. On the basis of t-values, last column of the
Table II, we can conclude that there is a significant
difference between both the algorithms at 5% level of
significance. The superior performance of the proposed
MDE is more evident from Table III, which gives the
average number of functions evaluations from which we can
see that MDE takes less number of function evaluations to
achieve the required fitness in comparison to the basic DE
in all cases except for Rosenbrock function (fRB), in which
both the algorithms approach to the maximum number of
function evaluation (NFE=106). In terms of improvement in
number of function evaluation MDE reduces the number of
function evaluation up to 44.5% for function fCB6. If we talk
about overall reduction in number of function evaluation, it
is more than of 29.99%. But for function fRB, in terms of
function evaluation there is no improvement, both
algorithms take maximum number of function evaluation.
Also from Table III, it can be seen that MDE takes less run
time in comparison to basic DE but in case of function fRB,
where number of function evaluation is same, MDE takes
more time than basic DE. Performance curves (convergence

203197

graphs) of few selected functions are given in Fig (1) – Fig
(4). From these illustrations also it is evident that the
convergence of proposed algorithm is faster than basic DE.

B. Influence of Dimensionality.

The performance of the proposed MDE is further
compared with the basic DE for scalable problems of
dimension 10, 30 and 50. The results obtained are
summarized in Tables IV which gives the results of MDE
and DE algorithms in terms of average fitness and average
number of function evaluations. According to results
obtained, MDE surpasses DE on 11 cases while DE
outperforms MDE in 4 cases out of 15 cases in term of
average fitness. If we talk in term of average number of
function evaluation (NFE) it is less in all cases for MDE
except for fRB and fSWF where it is same for both the
algorithms.

C. Numerical results of Application problems

In order to further validate the performance of MDE
algorithm we used it for solving two real life problems;
Transformer design [16] and transistor modeling [16]. Out of

these problems, the first problem is constrained in nature,
while the second is unconstrained. For handling constraints,
we have used the method proposed by Deb [17].

The numerical results of the real life problems are given
in Table V. experimental settings for real life problems are
same as that of benchmark problems. A run is terminated
when an accuracy of 10-04 i.e. | ௠݂௜௡ െ ௠݂௔௫| ൑ 10ିସ is
reached and then fitness standard deviation NFE and time is
stored in Table V. Once again from this Table we can
observe the superior performance of the proposed MDE
algorithm in terms of NFE and time which are quite less
than the basic DE in all the cases

VII DISCUSSION AND CONCLUSIONS
In this paper we proposed a modified version of basic DE

called MDE. The simulation of results showed that the
proposed algorithm is quite competent for solving problems
of different dimensions in less time and less number of
function evaluations without compromising with the quality
of solution. The set of problems considered, though small
and limited show the promising nature of MDE. Only for
Rosenbrock function fRB MDE took more time than the basic
DE, although the number of functions evaluations are same.
However, the work is still in the preliminary stages and more
modifications may be added to it to make it more robust.

TABLE I. COMPARISON OF TWO ALGORITHMS.

DE MDE
Initialization: Construct an initial population S of NP
individuals, dimension of each vector being n, using
the following rule:
Xi,j= Xmin,j + rand(0, 1)(Xmax,j-Xmin,j),
 Where Xmin,j and Xmax are lower and upper bound for
jth component respectively and rand(0,1) is a uniform
random number between 0 and 1.

Mutation: Select randomly three distinct individuals
Xr1, Xr2 and Xr3 from population S and perform
mutation using formula: ௜ܸ ൌ ૚࢘ࢄ ൅ ܨ ൈ ሺܺ௥ଶ െ ܺ௥ଷሻ
Where individual Xr1 is random (i.e. it may be any one
from these three individuals).

Crossover: Perform crossover according to equation
(2).

Selection: Calculate the objective function value at
new generated individual. Choose better of the two
(function value at target and trial point) using equation
(3) for next generation’s population.

Initialization: Randomly construct a population P of
NP individuals, dimension of each vector being n,
using the following rule:
Xi,j= Xmin,j + rand(0, 1)(Xmax,j-Xmin,j),
 Where Xmin,j and Xmax are lower and upper bound for
jth component respectively and rand(0,1) is a uniform
random number between 0 and 1.
Construct another population OP of NP individuals
using the following rule: ݕ௜,௝ ൌ ܺ௠௜௡,௝ ൅ ܺ௠௔௫,௝ െ ௜ܲ,௝
Where Pi,j are the points of population P.
Construct initial population S taking NP best
individuals from union of these two populations.

Mutation: Select randomly three distinct individuals
Xr1, Xr2 and Xr3 from population S and perform
mutation using formula: ௜ܸ ൌ ࢈࢚ࢄ ൅ ܨ ൈ ሺܺ௥ଶ െ ܺ௥ଷሻ
Where individual Xtb is best of these three individuals
and Xr2, Xr3 are the remaining two.

Crossover: Perform crossover according to equation
(2).

Selection: Calculate the objective function value at
new generated individual. If it is better than target
individual then replace target individual by this new
individual in current population.

204198

TABLE II. MEAN FITNESS, STANDARD DEVIATION OF FUNCTIONS IN 30 RUNS AND T VALUE.

Fun
Fitness

 Standard deviation t-value
DE MDE DE MDE

fEP -0.99999 -0.99999 6.98197e-07 6.21603e-07 0.00
fCB6 -1.03163 -1.03163 8.17617e-07 6.71679e-07 0.00
fGP 3.00000 3.00000 1.07046e-06 5.40168e-07 0.00
fH3 -3.86230 -3.86230 1.46942e-06 8.85213e-07 0.00
fCV 1.65825e-06 2.51160e-06 1.86572e-06 2.61837e-06 1.45
fRB 13.83440 6.91061 8.55350e-02 6.24724e-02 358.03

fACK 1.42800e-04 1.35818e-04 1.79218e-05 1.24837e-05 1.75
fSWF 7.28960e-04 7.30199e-04 3.85744e-06 8.73741e-06 0.71
fGW 4.62272e-05 4.71135e-05 9.03396e-06 8.84722e-06 0.38
fZA 4.50199e-05 4.15536e-05 7.48947e-06 1.09776e-05 1.42

TABLE III. NUMBER OF FUNCTIONS EVALUATION, % IMPROVEMETS AND AVERAGE TIME IN SECONDS

Fun NFE %
Improvement

Time
DE MDE DE MDE

fEP 833 568 31.812 0.10 0.10
fCB6 1020 566 44.509 0.11 0.10
fGP 970 630 35.051 0.11 0.10
fH3 1170 843 27.948 0.10 0.10
fCV 12716 8844 30.449 0.2 0.10
fRB 1000000 1000000 0.000 33.12 34.23

fACK 259410 176670 31.895 18.90 14.70
fSWF 366570 249720 31.876 5.20 4.30
fGW 224910 150480 33.093 17.10 12.50
fZA 214890 143220 33.351 44.10 28.30

TABLE IV. MEAN FITNESS AND AVERAGE OF FUNCTION EVALUATIONS IN 30 RUNS FOR FUNCTIONS.

Fun Fitness and NFE(n=10) Fitness and NFE(n=30) Fitness and NFE(n=50)
DE MDE DE MDE DE MDE

fRB
1.88258e-02

843100
3.27520e-06

162810
1.38344e+01

1000000
6.91061e+00

1000000
4.28553e+01

1000000
3.92105e+01

1000000

fACK
5.72106e-05

25910
8.96282e-05

16500
1.42800e-04

259410
1.35818e-04

176670
2.09244e-04

917750
1.97978e-04

629800

fSWF
2.42898e-04

26170
2.38916e-04

18130
7.28960e-04

366570
7.30199e-04

249720
4.50132e+03

1000000
4.68756e-03

1000000

fGW
1.20440e-05

96790
1.36853e-05

62840
4.62272e-05

224910
4.71135e-05

150480
8.04424e-05

764150
7.64880e-05

519200

fZA
1.52691e-05

17170
1.37965e-05

11400
4.50199e-05

214890
4.15536e-05

143220
8.57237e-05

851000
7.83553e-05

580900

TABLE V. NUMERICAL RESULTS OF REAL LIFE APPLICATION PROBLEMS.

 Solutions found of transformer design problem

 DE MDE NFE Time
x1 5.23203 5.23257

DE=344292
MDE=225090

DE=3.1
MDE=2.0

x2 4.72749 4.7292
x3 10.0924 10.0906
x4 13.618 13.6168
x5 0.827257 0.827318

205199

x6 0.736074 0.73587
g1 -3.77599e-05 8.05321e-05
g2 9.97301e-05 9.99378e-05

f(X) 86.6225 86.6225
Solutions found of transistor modeling problem

 DE MDE NFE Time
x1 0.901341 0.901336

DE=780768
MDE=458388

DE=17.3
MDE=9.9

x2 0.891174 0.891053
x3 3.87757 3.87933
x4 3.94643 3.94662
x5 5.32623 5.32509
x6 10.6239 10.6162
x7 0.0 0.0
x8 1.08914 1.08881
x9 0.705575 0.706727

f(X) 0.0543713 0.0543658

Figure 1. Performance curves of Ackley function.

Figure 2. Performance curves of Schawefel function.

Figure 3. Performance curves of Griewenk function.

Figure 4. Performance curves of Zakharov function.

0
2
4
6
8
10
12
14
16
18
20

0 50000 100000 150000

Fi
tn

es
s

NFE

DE

MDE

0
1000
2000
3000
4000
5000
6000
7000
8000
9000
10000

0 100000 200000

Fi
tn

es
s

NFE

DE

MDE

0

100

200

300

400

500

600

0 20000 40000

Fi
tn

es
s

NFE

DE

MDE

0.00E+00

5.00E+06

1.00E+07

1.50E+07

2.00E+07

2.50E+07

3.00E+07

3.50E+07

4.00E+07

0 2000 4000 6000 8000

Fi
tn

es
s

NFE

DE

MDE

206200

REFERENCES
[1] R. Storn and K. Price, Differential evolution – a simple and

efficient adaptive scheme for global optimization over
continuous spaces, Technical Report TR-95-012, Berkeley, CA,
1995.

[2] D. Goldberg, Genetic Algorithms in Search Optimization and
Machine Learning. Addison-Wesley. 1989.

[3] T.Back, F. Hoffmeister, H.Schwefel, A survey of evolution
strategies. In: Proceedings of the Fourth International
Conference on Genetic Algorithms and their Applications,
1991.pp. 2–9.

[4] L.Fogel, Evolutionary programming in perspective: The top-
down view. In: Zurada, J.M., Marks, R. Jr., Robinson, C. (Eds.),
Computational Intelligence: Imitating Life. IEEE Press,
Piscataway, NJ, USA. 1994.

[5] Paul K. Bergey, Cliff Ragsdale, Modified differential evolution:
a greedy random strategy for genetic recombination, Omega The
International Journal of Management Science 33, 2005, pp 255-
265.

[6] M.M.Ali, Differential evolution with preferential crossover,
European Journal of Operation Research 181, 2007 pp.1137-
1147.

[7] A.Salman, A.P.Engelbrecht, M.G.H.Omran, “Empirical analysis
of self adaptive differential evolution”, European Journal of
operational research 183, 2007 pp 785-804.

[8] Hui-Yuan Fan, Jouni Lampinen, “A Trigonometric Mutation
Operation to Differential Evolution,” Journal of Global
Optimization 2003, 27:105-129.

 [9] Shahryar Rahnamayan, H.R. Tizhoosh, M.M.A.Salama,
opposition based differential evolution, IEEE transactions on
evolutionary computation, 2007 pp 1-16.

[10] Z. Yang, J. He, and X. Yao, Making a Difference to Differential
Evolution, in Advances in Metaheuristics for Hard
Optimization, Z. Michalewicz and P. Siarry (eds.), pp 415-432,
Springer, 2007.

[11] Millie Pant, Musrrat Ali and V.P. Singh, “Differential Evolution
with Parent Centric Crossover”, Second UKSIM European
Symposium on Computer Modeling and Simulation 2008, 141 –
146.

[12] B.V.Babu and R.Angira, modified differential evolution (MDE)
for optimization of non-linear chemical processes, computer and
chemical engineering 30, 2006, 989-1002.

[13] P.Kaelo and M.M.Ali, a numerical study of some modified
differential evolution algorithms, European journal of
operational research 169, 2006, 1176-1184.

[14] U. K. Chakraborty (Ed.) Advances in Differential Evolution,
Springer-Verlag, Heidelberg, 2008.

[15] Shahryar Rahnamayan, H.R. Tizhoosh, M.M.A.Salama,
opposition versus randomness in soft computing techniques,
Applied soft computing, 2006.

[16] W.L.Price, global optimization by controlled random search,
journal of optimization theory and applications 40(3), 333-348,
1983.

[17] K. Deb, an efficient constraint handling method for genetic
algorithm, computer method in applied mechanics and
engineering, 186(2/4), pp 311-338, 2000.

207201

