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Abstract—In the present study a Modified Differential 
Evolution (MDE) algorithm is proposed. This algorithm is 
different in three ways from basic DE. For initialization it 
utilizes opposition-based learning while in basic DE uniform 
random numbers serve this task. Secondly, in basic DE mutant 
individual is random while in MDE it is tournament best and 
finally MDE utilizes only one set of population as against two 
sets as used in basic DE. The performance of proposed 
algorithm is investigated and compared with basic differential 
evolution. The experiments conducted shows that proposed 
algorithm outperform the basic DE algorithm in all the 
benchmark problems and real life applications 

Keywords:  differential evolution, mutation operator, 
opposition based learning. 

I.  INTRODUCTION 
Differential evolution, proposed by Storn and Price in 

1995 [1] is a relatively new optimization technique 
compared to evolutionary algorithms (EAs) such as Genetic 
Algorithms [2], Evolutionary Strategies [3], and 
Evolutionary Programming [4].  Within a short span of 
around thirteen years, DE has emerged as one of the most 
popular techniques for solving optimization problems. 
However, it has been observed that the convergence rate of 
DE do not meet the expectations in cases of highly 
multimodal problems. Several variants of DE have been 
proposed to improve its performance. Some of the recent 
versions include greedy random strategy [5], preferential 
mutation operator [6], self adaptive DE [7], Trigonometric 
DE [8], opposition based DE [9], neighborhood search DE 
[10], Parent Centric DE [11], modified differential evolution 
[12], differential evolution with random localization [13] 
etc. several recent versions of DE can be found in [14]. 

In all the above mentioned versions of DE, other than 
[9], modifications are done in mutation or in update 
processes. 

The proposed MDE algorithm is inspired by three ideas; 
(1) use of opposition based learning to generate the initial 
population (2) use of tournament best process to generate 
mutant vector to explore the region around the tournament 
best individual xtb (say) for each mutated point and finally 
(3) use of a single set population in contrast to the two set 
population as in basic DE. 

The concept of opposition based learning (OBL) was 
first given in [9] to generate the initial population for a basic 

DE algorithm. The main idea behind OBL is the 
simultaneous consideration of an estimate and its 
corresponding opposite estimate in order to achieve a better 
approximation for the current candidate solution. In fact, a 
mathematical proof has been proposed to show that, in 
general, opposite numbers to the initial set of random 
numbers are more likely to be closer to the optimal solution 
than purely random one [15]. Use of a single set of 
population for DE was suggested in [12] where it was 
shown use of a single set population helps in reducing the 
computational time of the DE algorithm.  

Motivated by the successful implementation of the 
above mentioned modifications we decided to club these 
features together to develop a modified algorithm which we 
have named as modified DE or MDE. 

The remainder of the paper is structured as follows. 
Section II describes the basics Differential Evolution. 
Section III presents the proposed MDE. Experimental 
settings are given in Section IV. Benchmark problems and 
real life application problems are listed in Section V. Section 
VI provides comparisons of results. Finally the paper is 
concluded in section VII 

II. DIFFERENTIAL EVOLUTION  
Throughout the present study we shall follow 

DE/rand/1/bin version of DE and shall refer to it as basic 
version. This particular scheme is briefly described as:  

DE starts with a population of NP candidate solutions: 
Xi,G, i = 1, . . . ,NP, where the index i denotes the population 
and G denotes the generation to which the population 
belongs. The three main operators of DE are mutation, 
crossover and selection. 

  Mutation: The mutation operation of DE applies the 
vector differentials between the existing population 
members for determining both the degree and direction of 
perturbation applied to the individual subject of the 
mutation operation. The mutation process at each generation 
begins by randomly selecting three individuals {Xr1, Xr2, 
Xr3} in the population set of (say) NP elements. The ith 

perturbed individual, Vi,G+1, is generated based on the three 
chosen individuals as follows: 

           Vi,G+1 = Xr3,G + F * (Xr1,G − Xr2,G)                     (1)                        
Where, i = 1. . . NP, r1, r2, r3 ∈ {1. . . NP} are randomly 

selected such that  r1 ≠  r2  ≠  r3  ≠  i,  
F is the control parameter such that F ∈ [0, 1+]. 
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 Crossover: once the mutant vector is generated, the 
perturbed individual, Vi,G+1 = (v1,i,G+1, . . . , vn,i,G+1), and the 
current population member, Xi,G = (x1,i,G, . . . , xn,i,G), are 
then subject to the crossover operation, that finally generates 
the population of candidates, or “trial” vectors,Ui,G+1 = 
(u1,i,G+1, . . . , un,i,G+1), as follows: 

      

, . 1
, . 1

, .

j i G j r
j i G

j i G

v if rand C j k
u

x otherwise
+

+

≤ ∨ =⎧
= ⎨
⎩

                   (2)                                                         

Where, j = 1. . . n, k ∈ {1, . . . , n} is a random 
parameter’s index, chosen once for each i. The crossover 
rate, Cr ∈ [0, 1], is set by the user. 

  Selection: The selection scheme of DE also differs 
from that of other EAs. The population for the next 
generation is selected from the individual in current 
population and its corresponding trial vector according to 
the following rule: 
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Thus, each individual of the temporary (trial) population 
is compared with its counterpart in the current population. 
The one with the lower objective function value will survive 
from the tournament selection to the population of the next 
generation. As a result, all the individuals of the next 
generation are as good as or better than their counterparts in 
the current generation. In DE trial vector is not compared 
against all the individuals in the current generation, but only 
against one individual, its counterpart, in the current 
generation. 

III. PROPOSED DE ALGORITHM 
In this section we describe the proposed MDE, which 

uses the concepts of opposition based learning, random 
localization and one population set. The basic operators of 
MDE are same as basic DE but still it is different from it 
three points: 

1. MDE differs from basic DE in the initialization phase 
where MDE utilizes opposition based learning 
method while DE uses uniform random numbers for 
initialization of population. 

2. In mutation step MDE uses best individual of three 
points as mutant individual while in DE it is random 
(there is an equal chance of all these three for being 
selected as mutant individual). 

3. MDE maintain one population set while DE 
maintains two population sets, one current population 
and second advanced population (for next 
generation). The population is updated as the better 
individual is found. Also the newly found individual 
can take part in generation of new individual in 
current generation.    

A point to point comparison of two algorithms is given in 
Table I.   

IV. EXPERIMENTAL SETUP 
In order to make a fair comparison of MDE and basic 

DE, we have used C++ rand ( ) function to generate initial 
population for both the algorithms. The number of 

individuals in the population is taken 10*n. Value scaling 
factor F is taken as 0.5 which is neither too high nor low and 
therefore maybe considered as a good initial choice. Very 
small values of crossover constant Cr makes the 
convergence very slow whereas large values of Cr may end 
up in premature convergence. In the present study we have 
taken Cr =0.5. All the algorithms are executed on a PIV PC, 
using DEV C++, thirty times for each problem. In every 
case, a run was terminated when the function values of all 
points in population S were identical to an accuracy of five 
decimal places, i.e., ห݂݉ܽݔ െ ݂݉݅݊ห ൑ 10െ4 or when the 
maximum number of function evaluations (NFE =106) was 
reached. 

V. BENCHMARK PROBLEMS 
The performance of the proposed algorithm is tested on 

a set of ten benchmark and two application problems taken 
from literature [9]. First five functions fEP, fCB6, fGP, fH3 and  
fCV are with fixed dimension while second five fRB, fACK, fSWF, 
fGW and  fZA are scalable in nature. Scalable problems are 
tested for dimensions 10, 30 and 50. Real life application 
problem is taken from [16]. 

VI    NUMERICAL RESULTS AND COMPARISONS 

A. Comparison between DE and MDE 
 

In this section we compare MDE with the basic DE 
algorithm in terms of average fitness of function values, 
standard deviation, and t- values for which the results are 
listed in Table II. For scalable problems the dimension is 
taken as n=30. Table III provides number of function 
evaluations (NFE), percentage improvement in terms of 
number of functions evaluations and average time taken for 
the execution of algorithms. As it is clear from the Table II 
that in term of fitness function value and standard deviation 
both the algorithms give more or less similar results 
although in some cases MDE performs slightly better than 
classical DE. On the basis of t-values, last column of the 
Table II, we can conclude that there is a significant 
difference between both the algorithms at 5% level of 
significance. The superior performance of the proposed 
MDE is more evident from Table III, which gives the 
average number of functions evaluations from which we can 
see that MDE takes less number of function evaluations to 
achieve the required fitness in comparison to the basic DE 
in all cases except for Rosenbrock function (fRB), in which 
both the algorithms approach to the maximum number of 
function evaluation (NFE=106). In terms of improvement in 
number of function evaluation MDE reduces the number of 
function evaluation up to 44.5% for function fCB6. If we talk 
about overall reduction in number of function evaluation, it 
is more than of 29.99%. But for function fRB, in terms of 
function evaluation there is no improvement, both 
algorithms take maximum number of function evaluation. 
Also from Table III, it can be seen that MDE takes less run 
time in comparison to basic DE but in case of function fRB, 
where number of function evaluation is same, MDE takes 
more time than basic DE. Performance curves (convergence 
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graphs) of few selected functions are given in Fig (1) – Fig 
(4). From these illustrations also it is evident that the 
convergence of proposed algorithm is faster than basic DE.  
 

B. Influence of Dimensionality. 
 

The performance of the proposed MDE is further 
compared with the basic DE for scalable problems of 
dimension 10, 30 and 50. The results obtained are 
summarized in Tables IV which gives the results of MDE 
and DE algorithms in terms of average fitness and average 
number of function evaluations. According to results 
obtained, MDE surpasses DE on 11 cases while DE 
outperforms MDE in 4 cases out of 15 cases in term of 
average fitness. If we talk in term of average number of 
function evaluation (NFE) it is less in all cases for MDE 
except for fRB and fSWF where it is same for both the 
algorithms. 
 

C. Numerical results of Application problems 
 

In order to further validate the performance of MDE 
algorithm we used it for solving two real life problems; 
Transformer design [16] and transistor modeling [16]. Out of 

these problems, the first problem is constrained in nature, 
while the second is unconstrained. For handling constraints, 
we have used the method proposed by Deb [17]. 

The numerical results of the real life problems are given 
in Table V. experimental settings for real life problems are 
same as that of benchmark problems. A run is terminated 
when an accuracy of 10-04 i.e. | ௠݂௜௡ െ ௠݂௔௫| ൑ 10ିସ  is 
reached and then fitness standard deviation NFE and time is 
stored in Table V.  Once again from this Table we can 
observe the superior performance of the proposed MDE 
algorithm in terms of NFE and time which are quite less 
than the basic DE in all the cases 

VII    DISCUSSION AND CONCLUSIONS 
In this paper we proposed a modified version of basic DE 

called MDE. The simulation of results showed that the 
proposed algorithm is quite competent for solving problems 
of different dimensions in less time and less number of 
function evaluations without compromising with the quality 
of solution. The set of problems considered, though small 
and limited show the promising nature of MDE. Only for 
Rosenbrock function fRB MDE took more time than the basic 
DE, although the number of functions evaluations are same. 
However, the work is still in the preliminary stages and more 
modifications may be added to it to make it more robust.  

 
TABLE I. COMPARISON OF TWO ALGORITHMS. 

DE MDE 
Initialization: Construct an initial population S of NP 
individuals, dimension of each vector being n, using 
the following rule:  
Xi,j= Xmin,j + rand(0, 1)(Xmax,j-Xmin,j), 
 Where Xmin,j and Xmax are lower and upper bound for 
jth component respectively and rand(0,1) is a uniform 
random number between 0 and 1. 
 
 
 
 
 
 
 
Mutation: Select randomly three distinct individuals 
Xr1, Xr2 and Xr3 from population S and perform 
mutation using formula: ௜ܸ ൌ ૚࢘ࢄ ൅ ܨ ൈ ሺܺ௥ଶ െ ܺ௥ଷሻ 
Where individual Xr1 is random (i.e. it may be any one 
from these three individuals). 
 
Crossover: Perform crossover according to equation 
(2). 
 
Selection: Calculate the objective function value at 
new generated individual. Choose better of the two 
(function value at target and trial point) using equation 
(3) for next generation’s population. 

Initialization: Randomly construct a population P of 
NP individuals, dimension of each vector being n, 
using the following rule:  
Xi,j= Xmin,j + rand(0, 1)(Xmax,j-Xmin,j), 
 Where Xmin,j and Xmax are lower and upper bound for 
jth component respectively and rand(0,1) is a uniform 
random number between 0 and 1. 
Construct another population OP of NP individuals 
using the following rule: ݕ௜,௝ ൌ ܺ௠௜௡,௝ ൅ ܺ௠௔௫,௝ െ ௜ܲ,௝ 
Where Pi,j are the points of population P. 
Construct initial population S taking NP best 
individuals from union of these two populations.  
 

Mutation: Select randomly three distinct individuals 
Xr1, Xr2 and Xr3 from population S and perform 
mutation using formula: ௜ܸ ൌ ࢈࢚ࢄ ൅ ܨ ൈ ሺܺ௥ଶ െ ܺ௥ଷሻ 
Where individual Xtb is best of these three individuals 
and Xr2, Xr3 are the remaining two. 
 

Crossover: Perform crossover according to equation 
(2). 
 
Selection: Calculate the objective function value at 
new generated individual. If it is better than target 
individual then replace target individual by this new 
individual in current population.  
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TABLE II. MEAN FITNESS, STANDARD DEVIATION OF FUNCTIONS IN 30 RUNS AND T VALUE. 

 

Fun 
Fitness 

 Standard deviation t-value 
DE MDE DE MDE 

fEP -0.99999 -0.99999 6.98197e-07 6.21603e-07 0.00 
fCB6 -1.03163 -1.03163 8.17617e-07 6.71679e-07 0.00 
fGP 3.00000 3.00000 1.07046e-06 5.40168e-07 0.00 
fH3 -3.86230 -3.86230 1.46942e-06 8.85213e-07 0.00 
fCV 1.65825e-06 2.51160e-06 1.86572e-06 2.61837e-06 1.45 
fRB 13.83440 6.91061 8.55350e-02 6.24724e-02 358.03 

fACK 1.42800e-04 1.35818e-04 1.79218e-05 1.24837e-05 1.75 
fSWF 7.28960e-04 7.30199e-04 3.85744e-06 8.73741e-06 0.71 
fGW 4.62272e-05 4.71135e-05 9.03396e-06 8.84722e-06 0.38 
fZA 4.50199e-05 4.15536e-05 7.48947e-06 1.09776e-05 1.42 

 
TABLE III. NUMBER OF FUNCTIONS EVALUATION, % IMPROVEMETS   AND AVERAGE TIME IN SECONDS 

 

Fun NFE % 
Improvement 

Time 
DE MDE DE MDE 

fEP 833 568 31.812 0.10 0.10 
fCB6 1020 566 44.509 0.11 0.10 
fGP 970 630 35.051 0.11 0.10 
fH3 1170 843 27.948 0.10 0.10 
fCV 12716 8844 30.449 0.2 0.10 
fRB 1000000 1000000 0.000 33.12 34.23 

fACK 259410 176670 31.895 18.90 14.70 
fSWF 366570 249720 31.876 5.20 4.30 
fGW 224910 150480 33.093 17.10 12.50 
fZA 214890 143220 33.351 44.10 28.30 

 
TABLE IV. MEAN FITNESS AND AVERAGE OF FUNCTION EVALUATIONS IN 30 RUNS FOR FUNCTIONS. 

 

Fun Fitness and NFE(n=10) Fitness and NFE(n=30) Fitness and NFE(n=50) 
DE MDE DE MDE DE MDE 

fRB 
1.88258e-02 

843100 
3.27520e-06 

162810 
1.38344e+01 

1000000 
6.91061e+00 

1000000 
4.28553e+01 

1000000 
3.92105e+01 

1000000 

fACK 
5.72106e-05 

25910 
8.96282e-05 

16500 
1.42800e-04 

259410 
1.35818e-04 

176670 
2.09244e-04 

917750 
1.97978e-04 

629800 

fSWF 
2.42898e-04 

26170 
2.38916e-04 

18130 
7.28960e-04 

366570 
7.30199e-04 

249720 
4.50132e+03 

1000000 
4.68756e-03 

1000000 

fGW 
1.20440e-05 

96790 
1.36853e-05 

62840 
4.62272e-05 

224910 
4.71135e-05 

150480 
8.04424e-05 

764150 
7.64880e-05 

519200 

fZA 
1.52691e-05 

17170 
1.37965e-05 

11400 
4.50199e-05 

214890 
4.15536e-05 

143220 
8.57237e-05 

851000 
7.83553e-05 

580900 
 
 

TABLE V. NUMERICAL RESULTS OF REAL LIFE APPLICATION PROBLEMS.  
 

 Solutions found of transformer design problem 

 DE MDE NFE Time 
x1 5.23203 5.23257 

DE=344292 
MDE=225090 

DE=3.1 
MDE=2.0 

x2 4.72749 4.7292 
x3 10.0924 10.0906 
x4 13.618 13.6168 
x5 0.827257 0.827318 
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x6 0.736074 0.73587 
g1 -3.77599e-05 8.05321e-05 
g2 9.97301e-05 9.99378e-05 

f(X) 86.6225 86.6225 
Solutions found of transistor modeling problem 

 DE MDE NFE Time 
x1 0.901341 0.901336 

DE=780768 
MDE=458388 

DE=17.3 
MDE=9.9 

x2 0.891174 0.891053 
x3 3.87757 3.87933 
x4 3.94643 3.94662 
x5 5.32623 5.32509 
x6 10.6239 10.6162 
x7 0.0 0.0 
x8 1.08914 1.08881 
x9 0.705575 0.706727 

f(X) 0.0543713 0.0543658 
 

             
 

 
Figure 1.  Performance curves of Ackley function. 

  
Figure 2.  Performance curves of Schawefel function. 

 

Figure 3.  Performance curves of Griewenk function. 

 

Figure 4.  Performance curves of Zakharov function. 
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