
SiC: An Agent based Architecture for
Preventing and Detecting Attacks to Ubiquitous
Databases

Cristian Pinzón, Yanira De Paz, Javier Bajo, Ajith Abraham and Juan M. Corchado

Abstract One of the main attacks to ubiquitous databases is the SQL injection at-
tack, which causes severe damages both in the commercial aspect, as in the user’s
confidence. This Chapter proposes the SiC architecture as a solution to the SQL
injection attack problem. This is a hierarchical distributed multiagent architecture,
which involves an entirely new approach with respect to existing architectures for
the prevention and detection of SQL injections. SiC incorporates a kind of intelli-
gent agent, which integrates a case-based reasoning system. This agent, which is
the core of the architecture, allows the application of detection techniques based on
anomalies as well as detection techniques based on patterns, providing a great de-
gree of autonomy, flexibility, robustness and dynamic scalability. The characteristics
of the multiagent system allow an architecture to detect attacks from different types
of devices, regardless of the physical location. The architecture has been tested on a
medical database, guaranteeing safe access from various devices such as PDAs and
notebook computers.

Key words: SQL injection, Security database, Intrusion Detection System, Multi-
agent, Case based Reasoning

Cristian Pinzón
University of Salamanca, Plaza de la Merced s/n, 37008, Salamanca, Spain, e-mail: cris-
tian ivanp@usal.es

Yanira De Paz
University of Salamanca, Plaza de la Merced s/n, 37008, Salamanca, Spain e-mail: yanira@usal.es

Javier Bajo
University of Salamanca, Plaza de la Merced s/n, 37008, Salamanca, Spain e-mail: jba-
jope@usal.es

Ajith Abraham
Norwegian University of Science and Technology e-mail: ajith.abraham@ieee.org

Juan M. Corchado
University of Salamanca, Plaza de la Merced s/n, 37008, Salamanca, Spain, e-mail: cor-
chado@usal.es

1

2 C. Pinzón et al.

1 Introduction

New technologies have provided ubiquitous working environments without time and
location constraint. Nowadays, users handle several mobile devices such as a note-
book computers, PDAs or intelligent phones. These devices manage information in
immediate way, independently of the physical location and time instant. These new
computing environments are supported by the growth of the network computing,
especially wireless networks [26]. Furthermore, it is necessary taking into account
a distributed database in a strategic mode. Databases provide information to user
applications on the different devices.

Information systems are based on a back-end database system. The database is a
critical piece both in daily operations as on decision making [10]. Information sys-
tems have great impact in each aspect of the daily life (e.g. bank accounts registers,
medical registers, retirements, payrolls, phone registers, tax registers, vehicle regis-
ters, supermarket purchases, school registers). Any meaningful data of the daily life
is stored on a database system [32]. Due to this situation, very often the databases
are a target of great number of attacks. The current solutions have been unable to
provide enough confidentiality and integrity of the stored data. Firewalls, Intrusion
Detection System (IDS), antivirus software and other security measures are limited
and cannot protect of new treats and zero day attacks.

The effort carried out in order to detect and stop the attacks targeted to the in-
formation systems, seems to be not very sound. However, the cyber attack problem
acquires more importance if recent technologies are taken into account. Nowadays
the users use mobile devices with wireless access. These devices have a great capa-
bility to access data in a ubiquitous way. As a consequence of these new computing
environments, the information should be distributed to fulfil the requests of different
users independently of the location, platform or physical devices. The distribution
of information supports ubiquitous databases, where the data are partitioned accord-
ing to the autonomy degree and efficiency required. The distribution of information
and new technologies makes it possible for an increase of complex attacks directed
to databases. One of the weak points on new working environments is caused by the
data transference through insecure communication channels, such as local networks
and Internet. This weakness is exploited by a malicious user who scans the traffic
for eavesdropping and can steal, change or delete sensitive information.

The SQL injection represents a potential attack for the database systems. The
SQL injection attack is at the top of the list of latest threats in recent years. The
damages caused by a SQL injection attack involves financial losses, reliance of the
consumers, providers and trading partners. In addition, such attacks disrupt the de-
velopment of outside and inside activities of the organization [13]. The architecture
presented in this Chapter, named SiC (Agent based architecture for preventing and
detecting attacks to ubiquitous database), is targeted for solving the problem of the
SQL injection attacks on databases. This proposal is oriented for ubiquitous envi-
ronments but it is not only limited for this scenario. SiC proposes a novel strategy to
block SQL injection attack through a distributed approach based on the capacities
of the agents and multiagent systems [49]. The philosophy of multiagent systems

An Agent Based Architecture for Protecting Ubiquitous Databases 3

allows dealing with the SQL injection attacks from a perspective of the communi-
cation elements, ubiquity and autonomous computation and from a view-point of
a global coordinated system. Every component in SiC interacts to achieve a global
common goal. SiC presents a hierarchical organization structured by levels or lay-
ers of agents. The agents of each level have assigned specific tasks which can be
executed independently to their physical location. The complexity of the agents is
incremented with the advance by the hierarchy pyramid. This hierarchical structure
allows a distribution of roles and tasks for the detection and prevention of SQL
injection attacks. Additionally, it has a great capacity for errors recovery.

The use of agents with advanced capabilities to reason and predict situations is
the main feature of this architecture. SiC makes use of CBR-BDI agents [15], which
are characterized by the integration of a CBR mechanism (Case-Based Reasoning)
[1]. This mechanism provides the agents a greater level of adaptation and learning
capacity. CBR systems make use of past experiences to solve new problems [22].
Thus, it is possible to generate new solutions from the results obtained in problems
with similar characteristics taken place in the past. CBR systems are characterized
by executing a reasoning cycle to solve each new problem. This reasoning cycle is
able to make a feedback from each new experience and modifying the case memory
and the reasoning capacity according to new changes. The latter is very suitable
to block SQL injection attacks by anomaly detection [35], [29]. A CBR system
learns and predicts behaviours or events that disclose a particular signature of a
SQL injection attack. CBR-BDI agents have a predictive capacity by means of a
mixture of neural network within the adaptation stage of the CBR cycle.

Agents can be characterized through their capacities in areas such as autonomy,
reasoning, reactivity, social abilities, proactivity, and mobility, among others. These
capacities provide great advantage for offering solutions at highly dynamic and dis-
tributed environment. Many activities in areas as networks security, e-commerce,
telecommunications, among others are carried out by multiagent systems imple-
mented successfully [19], [7], [2]. The capacity of the agents to be executed by
mobile devices makes them particularly suitable to detect SQL injection attacks on
ubiquitous databases. The agents integrated in SiC are based on the BDI deliberative
model (Believe, Desire, Intention) [48], [21]. The internal structure of these agents
and the capacities are based on mental aptitude using beliefs, desires and intentions
[12].

In summary, a distributed hierarchical multiagent architecture is presented as a
solution to SQL injection attacks. The main feature of SiC is the use of CBR-BDI
agents with detection and prediction capabilities to classify and block this type of
threats. CBR systems are especially suitable to solve classification problems, sim-
ilar to the SQL injection attacks. CBR-BDI agents incorporate a mixture of neural
networks in the adaptation phase of the CBR cycle to predict new attacks. Finally,
the architecture handles misuse detection, which accomplishes all the strategy of
detection and prevention proposed.

The preliminary results obtained after the implementation of the initial prototype
show the effectiveness of the strategy to minimize attacks; the highest performance
through the distribution of the workload among the available nodes into the architec-

4 C. Pinzón et al.

ture; the scalability, offering an easy way to incorporate new nodes in monitored en-
vironments; a great learning and adaptation capacity, which is provided by the CBR
mechanism and the mixture of neural networks; and the flexibility to be adapted to
many sensitive scenario to SQL injection attacks. The ultimate goal of this work
is the presentation of an effective and novel solution, designed for working in new
environments, mainly in those where the mobility of the information is essential.

The remainder of this Chapter is structured as follows: Section 2 presents the
problem that has prompted most of this research work; Section 3 describes the SiC
architecture, different agents incorporated to the architecture and the communica-
tion among them; Section 4 explains in detail the most important agent of the SiC
architecture, the CBR-BDI classifier agent. Section 5 describes a study case using
a medical database and presents the results and discussion. Finally, in Section 6,
conclusions are presented.

2 Database Threat and Security Revision

Data is usually stored in a ubiquitous database in order for the applications to have
access to them from any location and any time. A ubiquitous system is necessarily
distributed [52], claiming that data have to be present everywhere for the authorized
user. This feature is achieved when the databases are partitioned, so that data are
distributed in several local databases strategically located on different geographic
nodes.

A ubiquitous database allows any user to access its data through custom applica-
tions. The source of these data do not need to be known by the user. The develop-
ment of a ubiquitous model has two determining factors; the rising tide of Internet
and the World Wide Web. These factors had been made into in a means for the
global spreading and the data interchange. In this sense, databases have played a
crucial role for the storage of a huge volume of data. On the other hand, the access
via wireless has enabled a great interconnection among devices and unrestricted
data accesses.

As a result of the decentralization of the information, new issues about the pri-
vacy and the information security have been addressed. In recent years, large com-
panies have opted by transferring the management control through service outsourc-
ing of a specialized supplier for specific tasks. One of the most notable outsourcing
services is database outsourcing where organizations outsource the data storage and
management to third-party service supplier [51]. This management model has gener-
ated discussions about the issue of sharing sensitive data that might endanger private
information of clients and the organization itself. In the same vein, the knowledge
extracting through rules of data mining have caused hard criticism. The tools used
to discover unknown patterns can extract unauthorized information that place in risk
the privacy of individuals and the confidentiality of their data [45]. Regarding the on-
going threats targeted against the information system and databases are the viruses
and worms. The worms are considered a particularly dangerous threat because of

An Agent Based Architecture for Protecting Ubiquitous Databases 5

its evolution towards complex techniques to avoid the security mechanisms. They
can carry an explosive charge to be executed according to fixed conditions by the
hacker. New sophisticated variants of worms are expected to become more preva-
lent in short term such as SQL injecting attacks through the application layer [6].
Because of the increase of incidents, the information security is considered a criti-
cal issue within the strategic policies of organizations. In the commercial sector and
the research centers, more resources and human capital are devoted to research new
security solutions that can face new attacks and to protect corporate databases.

Security measures to protect information systems and databases of outsider at-
tacks include firewalls, filters, authentication, communication transport encryption,
intrusion detection, auditing, monitoring, honeypots, security tokens, biometric de-
vices, sniffers, active blocking, file level security analysis or Demilitarized Zone
[36]. In the particular case of the database security, it is necessary to have a closer
look from a outlook of mechanisms such as access control policies, authentica-
tion and identification mechanisms. In a multilevel secure database management
system (MLS/DBMS), authorized users at different security levels access share a
database at different security levels without violating security. The security policy
of MSL/DBMS includes a policy for mandatory access control (MAC) and dis-
cretionary access control (DAC). Mandatory security controls restrict access to data
depending on the sensitivity levels of the data and the authorization level of the user.
Discretionary Security measures are usually in the form of rules, which specify the
type of access that users or groups of users may have to different kinds of data [10].
Additionally to these mechanisms, other approaches have arisen such as the Hippo-
cratic Databases inspired in the Hippocratic Oath [3] and the use of cryptography
techniques to protect the confidentiality of data [33].

The current databases security measures seem insufficient and less if it is exam-
ined from the perspective of the threats targeted to the new working environments.
Nowadays the attacks are addressed to the application layer and the database sys-
tems causing that the protection mechanisms cannot detect them. A decade or more
ago, databases were usually kept physically secure in a central data center and ac-
cessed mostly by applications into the corporate borders. However, now applications
and databases may be distributed in business units to meet local needs. Even more
critical is the fact that these applications and databases are increasingly available
to suppliers, customers and business partners in order to carry out business over
the Web [5]. Organizations are hit hard when a malicious user bypass or violates
protective measures to steal, modify or destroy sensitive information.

SQL injection attacks are a potential threat at the application layer. The Structure
Query Language (SQL) forms the backbone of many Database Management Sys-
tems, especially relational databases. It allows carry out information handling and
databases management, but it also facilitates building a type of attack which results
extremely lethal. The SQL injection is not a new attack, but it has not been removed
of the threat list for databases.

A SQL injection attack brings harm to the organizations such as financial losses;
affects customer confidence, suppliers and business partners and disrupts the outside
and inside activities of the organization. A SQL injection attack takes place when

6 C. Pinzón et al.

a hacker changes the semantic or syntactic logic of a SQL text string by inserting
SQL keywords or special symbols within the original SQL command that will be
executed at the database layer of an application [4], [31], [24]. The response capac-
ity after carrying out a SQL injection attack depends on the type of technique used
and the caused damage grade. This response can take hours, days and even weeks.
Web applications are the main target of this type of attack. In the case of these ap-
plications, the static chain is concatenated with user inputs. If the user inputs are
tainted, an injection attack is carried out when the query is executed on database.
However, even though the most common attack method being through request via
HTTP (HyperText Transport Protocol) protocol, other methods are vulnerable to a
SQL injection attack. Applications on wireless mobile devices execute SQL queries
on the database. These queries are transmitted through insecure transmission chan-
nel allowing that it can be monitored, captured and changed by a hacker. Finally, a
recent vulnerability has arisen in the pervasive computing applications by the use
devices or sensors vulnerable [42], [40], [41]. This new technology has presented
security hole and therefore it can be exploited by a SQL injection attack causing
great damage.

The cause of the SQL injection attacks is relatively simple. This attack is caused
by inadequate input validation on user interface. As a result of this attack a hacker
can carry out an unauthorized data handling, retrieval of confidential information,
and in the worst possible case, to take over control of the application server. The
main features to give a detailed description of a SQL injection attack are the attack
mechanism used and the attack intention [25].

The most commons Database Management Systems such as Microsoft SQL
Server, Oracle, MySQL, Informix, Sybase have been target of SQL injection attacks
during recent years [32]. The problem of the SQL injection attack increases with the
use of technologies designed to offer new working environments, especially in sec-
tors such as e-commerce, healthcare system, industry, e-government, among other.
The benefits offered by the new devices such as the full interconnection and corpo-
rate database access from any location, can give space to SQL injection attacks. The
new working environments require information at any location and time for all the
authorized users. This fact forces decentralization of data and a strategic location of
databases into the working environments. In the case of the SQL injection attacks,
this setting is special to exploit new vulnerabilities.

SQL injection attacks have led up to a significant number of research works,
both in the sector commercial as at academic research centers. Unfortunately the
advances in the detection and prevention measures have not achieved the required
level to overcome this type of attack. The current security products found at the
market are vital for the defence of information security; nevertheless the results
against the SQL injection attacks are poor enough. The low efficacy is due to that
security measures are not intended for a specific type of attack, but on the contrary,
they are diversified to many threats. These security products are not intended for
SQL injection attacks exclusively.

Regarding the proposed academic approaches as a solution to the SQL injection
attacks, a wide revision is carried out. Some artificial intelligence techniques have

An Agent Based Architecture for Protecting Ubiquitous Databases 7

been proposed as solution to the SQL injection attack. Between the approaches re-
vised is WAVES (Web Application Vulnerability and Error Scaner) [27]. This so-
lution is based on a black-box technique. WAVES is a web crawler that identifies
vulnerable points, and then builds attacks that target those points based on a list of
patterns and attack techniques. WAVES monitors the response from the application
and uses a machine learning technique to improve the attack methodology. WAVES
can not check all the vulnerable points like the traditional penetration testing. The
strategy used by the intrusion detection systems have been implemented in the SQL
injection attacks. Valeur [46] presents an IDS approach which uses a machine learn-
ing technique based on a dataset of legal transactions. These are used during the
training phase prior to monitoring and classifying malicious accesses. Generally,
IDS systems depends on the quality of the training set; a poor training set would re-
sult in a large number of false positives and negatives. Rietta [43], proposed an IDS
system at the application layer using an anomaly detection model, which assumes
certain behavior of the traffic generated by the SQL queries; that is, elements within
the query (sub-queries, literals, keyword SQL). It also applies general statistics and
proposes grouping the queries according to SQL commands and then comparing
them against a previously built model. The SQL query that deviates from the nor-
mal profile is rejected. The proposals based on intrusion detection depend on the
database, which requires a continue updating in order to detect new attacks. Finally,
Skaruz [44] proposed the use of a recurrent neural network (RNN). The detection
problem becomes a time series prediction problem. This approach leads to a large
number of false alarms.

Other strategy based on techniques of string analysis and the generations of dy-
namic models has been proposed as solution to the SQL injection attacks. The Java
String Analysis (JSA) library [16] provides a mechanism for generating models of
Java strings. JSA performs a conservative string analysis of an application and cre-
ates automata that express all the possible values a specific string can have at a point
in the application. This technique is not targeted to SQL injection attacks, but it is
important because other approach use the library to generate middle forms of mod-
els. JDBC Checker [23] is a technique for statically checking the type correctness
on SQL queries dynamically generated. This technique was not intended to detect
and prevent general SQL injection attacks, but can be used to prevent attacks that
take advantage of type mismatches in a dynamically generated query string. Wasser-
mann and Su [47] proposed an approach that uses a static analysis combined with
automated reasoning. The technique verifies that the SQL queries generated in the
application usually do not contain a tautology. The technique detects only SQL in-
jections that insert a tautology in the SQL queries, but can not detect other types of
SQL injections attacks. Halfond and Orso [24] propose AMNESIA (Analysis and
Monitoring for Neutralizing SQL Injection Attacks). This approach uses a static
analysis to build the models of the SQL queries that an application generates at each
point of access to the database. In the dynamic phase, AMNESIA captures all the
SQL queries before they are sent to the database and checks each query against the
statically built models. Queries that violate the model are classified as SQL injection
attacks. AMNESIA depends on accuracy static analysis. With only slight variations

8 C. Pinzón et al.

of accuracy, it generates a large number of false positive and negatives. SQLGuard
[14] is an approach that checks queries at runtime to analyze if these queries con-
form to a model of expected queries. In this approaches, the model is expressed
as a grammar that only accepts legal queries. The model is deduced at runtime by
examining the structure of the query before and after the addition of user input.
The approach uses a secret key to delimit user input during parsing by the runtime
checker. The security of this approach depends on an attacker not being able to find
the key. Additionally, it requires that the programmer rewrites the code to use a
special middle library. Kosuga et al. [28] proposed SANIA (Syntactic and Seman-
tic Analysis for Automated Testing against SQL Injection), which captures queries
between Web application and database. It automatically generates crafted attacks
according the syntax and semantic of vulnerable points. SANIA uses a syntactic
analysis tree of the query to evaluate the security of the points. SANIA presents a
drawback; it has a significant rate of false positive.

Other main query development paradigms proposed as solution to SQL injection
attacks are discussed below. SQLrand [11] provides a framework that allows de-
velopers to create SQL queries using randomized keywords instead of the normal
SQL keywords. A proxy between the web application and the database server cap-
tures SQL queries and de-randomizes the keywords. The SQL keywords injected
by an attacker would not have been constructed by the randomized key-words, so
the tainted SQL strings would have syntax error. SQLrand depend on secret key to
modify keywords, its security relies on hackers not being able to discover this key.
Additionally it requires the application developer to rewrite code. SQL DOM [34]
and Safe Query Objects [17] use encapsulation of database queries to avoid SQL
injection attacks. These techniques changing the process to build SQL string to one
systematically way that uses a type-checked API. API is able to systematically ap-
ply coding best practices such as input filtering and close-fitting type checking of
user input. Although effective, these techniques have the drawback that both require
developers to learn and use a new programming paradigm or query development
process.

A great interest has existed to overcome the SQL injection attacks through new
solutions. However, the approach addressed for this type of attack has been limited
to centralized models with little flexibility, scalability and a low efficacy. If it is
considered the use of new technologies such as mobile technology, many of these
solutions are not easy to implement or they require changes to adapt to this envi-
ronments. In this sense a solution has been proposed to work at scenarios where
the protecting of the database and the information is carried out into a ubiquitous
environment. The proposal is based on a distributed hierarchical multiagent archi-
tecture, using autonomous agents organized by levels. It is an innovative solution to
stop the SQL injection attacks. The special design allows incorporating two main
techniques used in the IDS Systems, such as anomaly detection and misuse detec-
tion. Both techniques are integrated inside of SiC architecture.

With a well structured architecture, each component knows its roles and has the
necessary resource to do its job. SiC as solution to SQL injection attack is effective,
presents a great performance and provides flexibility, adaptability and scalability for

An Agent Based Architecture for Protecting Ubiquitous Databases 9

new computation environments. Detailed architecture of SiC is presented in the fol-
lowing Section, describing the role of each components, type of agents, interaction,
communication and tasks.

3 An Architecture based on Multiagent System

The agents handle capacities such as autonomy, social abilities, reasoning, learning,
mobility, among others [49]. One of the main features of agents is their ability to
carry out cooperative and collaborative work, when they are grouped into multiagent
systems to solve problems in form distributed [18]. These features make the agents
suitable to deal with the SQL injection attacks. A distributed hierarchical multiagent
architecture presents a great capacity for the distribution of task and responsibilities,
such as failure recovering, adaptation to new changes and high level of learning.
These factors are important to achieve a robust and efficient solution. One of the
main novelties of the architecture is the use of CBR-BDI agent [30], which presents
a great capacity of learning and adaptation. The agents BDI have a deliberative
structure based on the BDI model [49]. Moreover, a BDI agent integrates a case-
based reasoning mechanism [1] that allows to solve problems through the use of
past experiences. As the core of the strategy for the classification of SQL queries is
founded in detection by anomaly, it seems appropriate to use a CBR mechanism [1]
that leverages past experience to detect anomaly. This CBR mechanism additionally
incorporates a mixture of neural networks [38] in its reuse phase. This mixture of
neural networks provides a capacity for the prediction of SQL injection attack.

The SiC presents an additional advantage through the use of wireless mobiles
device, which can execute mobile agents. These devices have experimented a great
growth in recent years, and it is common to find SQL queries that can be originated
from different mobile devices including personal assistants (PDA), mobile phones,
computer notebooks and workstations. The agents based on misuse detection and
anomaly detection can be organized in a distributed way to leverage of available
resources and improve the performance of the classification process, regardless of
the nature of the physic device. The approach is based on an organizational design
that is obtained through a multi-hierarchical architecture. The agents are distributed
so that at the time of initiating a classification task, each type of agent knows its
responsibilities; the data it needs to do its job and where to send the results. The
interaction and communication between the agents is crucial to achieve the goal of
classification and detection of SQL injection attacks.

Function of each type of agent within the architecture is described below:

• Sensor agents: They are incorporated at each device with access to the database.
Their functions consist of capturing datagrams, ordering of TCP fragments for
extracting the SQL query string, and syntactic analysis. The tasks of the Sensor
agents end when the results (the SQL string transformed by the analysis, the
result of the analysis of the SQL string and the user data) are sent to the next
agent at the hierarchy of the classification process.

10 C. Pinzón et al.

• FingerPrint agents: The numbers of FingerPrint agents depend on the workload at
a given time. A FingerPrint agent receives the information of a Sensor agent and
executes a searching process and matching with well known patterns stored in a
previously built database. The FingerPrint agents works in coordination with the
Pattern agents to search and save SQL string patterns in the database. The Fin-
gerPrint agent finishes its task when it sends its results together with the results
of the Sensor agent to the Anomaly agent. The results of the FingerPrint agent
consist of the SQL string transformed by the analysis, the result of the analysis
of the SQL string, the user data and the search results.

• Pattern Agent: It is the responsible to save the new SQL string patterns in the
database and search for patterns when the FingerPrint agent requests it.

• Anomaly agents: They are the core of the classification process. Their strategy
is founded in a case-based reasoning mechanism that incorporates a mixture of
neural networks. These agents retrieve those similar past cases with respect to
the new cases, and then train the neural networks with the recovered cases and
generate the final classification. The numbers of Anomaly agents depend on the
workload at a given time. The result of the classification is sent to the Manager
agent for the evaluation. This agent work in coordination with the LogUser agent.

• LogUser agent: This agent records the actions of the user and it searches for the
user profile (the historical profile and the user statistics) when it is requested by
the Classifier agent.

• Manager agent: This agent allows an expert to evaluate the classification process
and situations that have not been solved in the classification process such as a
suspicious classification. Moreover, it allows adjustment of the configuration of
the architecture, carries a record and control of the active agents in each level and
coordinates the distribution of the workload among the agents. Finally, it coordi-
nates the alerts with the Interface agent and required actions to take over an attack
when it has been detected. Avoiding the risk to compromise the architecture to
a fault, an anomaly agent can be promoted to be Manager agent. This agent is
selected by means of a voting method [50] between the Anomaly agents.

• Interface agent: This agent allows the interaction of the user of the security sys-
tem with the architecture. The interface agent communicates the details of an
attack to the security personnel when an attack is detected. It has the ability to
work on mobile devices. This capacity allows ubiquitous communication to at-
tend the alerts immediately.

• DB agent: It is in charge of executing the query in the database. When the query
has been classified as legal, then it executes on the database and the results are
send to the user owner of the request.

• Response agent: This agent delivers a response to the user once a classification
solution is obtained. If the query has been classified as legal, the results of the
query are sent to the user interface. Otherwise, if the query has been classified as
illegal, a warning message is sent to the user interface.

Figure 1 presents the abstract multiagent architecture showing different types of
agents in charge of the classification of SQL queries.

An Agent Based Architecture for Protecting Ubiquitous Databases 11

Fig. 1 Multiagent architecture for the classification of SQL queries

3.1 Communication Among Agents

In distributed environments, it is essential to provide necessary mechanisms for the
coordination and cooperation among the agents so they can efficiently develop their
tasks. The SiC architecture incorporates agents to work on mobile device such as
PDAs, Smart phones, computer notebooks and also on workstations. The communi-
cation between the devices is carried out via wireless and LAN. The wireless mobile
devices allow taking advantage of the portability.

The communication among the type of agents is carried out using a standard rec-
ommend by FIPA (Foundation for Intelligent Physical Agents) [8]. The standard is
named CAL (Communicative Act Library), which includes a set of performative to
build the message format. The platform to build SiC architecture has been JADE
(Java Agent Development Framework) [9], which is an implementation extended of
the FIPA standard and as such, it platform provides a set of libraries for the devel-
opment of the agents. The communication of the agents by remote device is through
an extension HTTP of JADE. In the case of the mobile agents, it uses Jade-Leap
[9], that is another available extension of the framework. The Content specification
language used is FIPA-SL [20], which allows defining the messages semantic ac-

12 C. Pinzón et al.

cording to the type of contents of the message defined for SiC. Figure 2 shows an
example of the messages communicated between two agents of the architecture.

Fig. 2 Example of a format of message communicated among the agents.

Figure 2 presents a message format transmitted by an agent to other. Once cap-
tured the SQL query by a Sensor agent, this sends a message inform type to a Finger-
Print agent to carry out a detection based on pattern matching. The message includes
data of the captured SQL string such as transformed SQL string, data of the SQL
string analysis and user data owner of the query.

The types of messages used in the multi-agent architecture are: request, agree,
cancel, inform, query-if, subscribe, propose, reject-proposal, accept-proposal, fail-
ure and not-understood. The protocols used for the communication and negotia-
tion are defined by FIPA: FIPA-request protocol, FIPA-query protocol and FIPA-
ContractNet protocol. The agents need to interact and negotiate continuously to ful-
fill the assigned task. Figure 3 present two examples of the communication between
two agents through a protocol diagram.

Fig. 3 Communications pattern during the interchange de message between the agents .

Figure 3(a) shows the communication between the FingerPrint agent and the Pat-
tern agent to request stored SQL patterns when is applied for misuse detection. Fig-
ure 3(b) shows the message sent by the FingerPrint agent when it sends the results
generated by the capture of the SQL query, string analysis and user data.

An Agent Based Architecture for Protecting Ubiquitous Databases 13

The security is a primordial element in the agents communication. This resource
has been provided by a secured channel through the protocol HTTPS (Hy-pertext
Transfer Protocol Secure) [39]. HTTPS is an Internet Protocol that provides a SSL
layer of security. This protocol uses SSL and HTTP to protect the communication
channel between the client and the server on a network. When HTTP is used to ac-
cess the data on the Internet, HTTPS provides strong authentication. For the internal
communication between the agents, the solution applied was by means of JADE-S
[9]. JADE-S is a plug-gin that supports user authentication and agents, encryption
and signature of message, but JADE-S is limited for working with mobile agents.

4 Classifier Model of SQL Injection Attacks

The classifier CBR-BDI agent [37]incorporates a Case-Based Reasoning system
that allows the prevention and detection of a SQL injection attack. The prevention
and detection is supported by a prediction model based on neural networks, con-
figured for short-term predictions of intrusions. This mechanism uses a memory of
cases, which identifies past experiences with the corresponding indicators that char-
acterize each of the attacks. This Chapter presents a novel classification system that
combines the advantages of the CBR systems, such as learning and adaptation, with
the predictive capabilities of a mixture of neural networks. These features make the
architecture appropriate for using it in dynamic environments. For working with
CBR mechanism, the key concept is that of “case”. A case is defined as a previous
experience and is composed of three elements: a description of the problem; a solu-
tion; and the final state. To introduce a CBR motor into a BDI agent, we represent
CBR system cases using BDI and implement a CBR cycle. This CBR cycle consists
of four steps: retrieve, reuse, revise and retain.

The elements of the SQL query classification problem are described as follows:

• Problem Description: Describes the initial information available for generating a
classification. As evident in Table 1, the problem description consists of a case
identification, user session and SQL query elements.

• Solution: Describes the action carried out in order to solve the problem descrip-
tion. As evident in Table 1, it contains the case identification and the applied
solution.

• Final State: Describes the achieved state after the solution has been applied. It
takes three possible values: attack, not attack and suspicious. The multi-agent
architecture incorporates the Manager agent, which allows an expert to evaluate
the classification.

The proposed mechanism is responsible to classify SQL database queries made
by users. When a user makes a new request, it is checked by a pattern matching.
These patterns are stored in a database that handles a significant number of sig-
nature that are not allowed on user level such as symbol combination, binary and
hexadecimal encoding and reserved statement of language (union, execute, drop,

14 C. Pinzón et al.

Table 1 Structure of the problem definition and solution for a case of SQL query classification

Problem description fields Solution fields

IdCase Integer Idcase Integer
Sesion Session Classification Query Integer
User String
IP Adress String
Query SQL Query SQL
Affected table Integer
Affected field Integer
Command type Integer
Word GroupBy Boolean
Word Having Boolean
Word OrderBy Boolean
Number And Integer
Number Or Integer
Number literals Integer
Number LOL Integer
Length SQL String Integer
Cost Time CPU Float
Start Time Execution Time
End Time Execution Time
Query Category Integer

revoke, concat, length, asc, chr among others). If the FingerPrint agent detects some
known signature, it is automatically identified as an attack. In order to identify the
rest of the SQL attacks, the Anomaly agent uses a CBR mechanism, which must
have a memory of cases dating back at least 4 weeks, with the structure described
in Table 1. The problem description of a case is obtained by means of a string anal-
ysis technique over the SQL query. This process can be understood easily through
the following example: It receives a query with the following syntax: Select field1,
field2, field3 from table1 where field1 = input1 and field2=input2.

If the fields input1 and input2 are used to bypass the authentication mechanism
with the following input data: Input1=‘ or 9876= 9876 – and Input2= (blank). The
result of these input data would alter the SQL string as follows: Select field1, field2,
field3 from Table 1 where field1 =” or 9876 = 9876 - - ‘and field2= ”

The analysis of the SQL string would generate the result presented in Table 2
with the following fields: Affected table(c1), Affected field(c2), Command type(c3),
Word GroupBy(c4), Word Having(c5), Word OrderBy(c6), Number And(c7), Num-
ber Or(c8), Number literals(c9), Length SQL String(c10), Number LOL(c11), Cost-
Time CPU(c12), Query Category(13). The fields Command type and Query Category
has been encoded with the following nomenclature Command Type: 0=select, 1=in-
sert, 2=update, 3=delete; Query Category: -1=suspicious, 0=illegal, 1=legal.

The first phase of the CBR cycle consists of recovering past experience from the
memory of cases, specifically those with a problem description similar to the current
request. In order to do this, a cosine similarity-based algorithm is applied, allowing
the recovery of those cases which are at least 90% similar to the current request.

An Agent Based Architecture for Protecting Ubiquitous Databases 15

Table 2 SQL String transformed through the string analysis

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13

1 3 0 0 0 0 1 1 2 81 1 2.91 0

The cases recovered are used to train the mixture of neural networks implemented
in the reuse phase. The neural network with the sigmoidal function is trained with
the recovered cases that were an attack or not, whereas the neural network with hy-
perbolic function is trained with all the recovered cases (including the suspects). A
preliminary analysis of correlations is required to determine the number of neurons
of the input layer of the neuronal networks. Additionally, it is necessary to normal-
ize the data (i.e., all data must be values in the interval [0,1]). The data used to train
the mixture of networks must not be correlated. With the cases stored after deleting
correlated cases, the inputs for training the mixture of networks are normalized. It
is considered to be two neural networks. The results obtained using a mixture of
the outputs of the networks provides a balanced response and avoids individual ten-
dencies (always taking into account the weights that determine which of the two
networks is more optimal).

Figure 4 shows the four steps of the CBR cycle including the mixture of the
neural networks through an algorithm. This strategy of classification is carried out
inside an Anomaly CBR-BDI agent. This Anomaly CBR-BDI agent is located on a
strategic level of the architecture.

4.1 Neural Network Learning Algorithm

As is indicated earlier, an essential element is the mixture of neural networks that
is used in the reuse stage of the CBR cycle by the Anomaly CBR-BDI agent to
predict attacks. This section describes in detail the operation of the mixture of neural
networks. The mixture uses two neural networks, and both of them are multilayer
perceptrons, but use different types of activation functions. Each of these networks
obtains an individual solution for the problem. Then, the solutions provided are
combined to find the optimal classification. Figure 5 illustrates a GUI of the neural
networks architecture.

The new case is presented to both neural networks and then each neural net-
work provides its independent opinions about the classification. The neural network
based on a sigmoidal function gives two results (illegal or legal) and the neural net-
work through a hyperbolic tangential function produce three results (illegal, legal
or suspicious). In the following paragraphs, we describe the learning algorithm for
the neural networks, explaining the differences for each type of network. The ad-
vantages of the classification method provided by each of the individual networks
are discussed. Finally, the mixture is presented and formalized. The equations are
presented in the order they should be executed.

16 C. Pinzón et al.

Fig. 4 Algorithm of the Cycle CBR for classifying SQL query

1. To present the input vector to the input layer.

X p = (xp
1 , ...,xp

i , ...,xp
N)T (1)

2. To calculate the value of the levels of excitation for the neurons from the hidden
layer

net p
j =

N

∑
i=1

W p
ji(t)X

p
i (t)+θ p

j (2)

An Agent Based Architecture for Protecting Ubiquitous Databases 17

Fig. 5 Capture of the mixture of the neural networks

Where W P
ji is the weight that connects the neuron “i” from the input layer with

the neuron “ j” from the hidden layer according to a “p” pattern (figure 5). θ P
j is

the threshold or bias associated to the neuron “ j” from hidden layer according to
a “p” pattern.

3. To calculate the outputs of the neurons from the hidden layer.

Y p
j = f j(net p

j), (3)

Where f j is the deactivation function of the neurons “ j” from the hidden layer.
4. To calculate the value of the levels of excitation for the neurons at the output

layer.

net p
k =

H

∑
j=1

W p
k j(t)y

p
j (t)+θ p

k (4)

where W P
k j is the weight that connects the neuron “k” from the output layer with

the neuron “ j” from the hidden layer according to a “p” pattern (figure 5). θ P
k , it

is the threshold or bias associated to the neuron “k” from output layer according
to a “p” pattern.

5. To calculate the output of the neural network.

Y p
k = fk(net p

k), (5)

where fk is the activation function of the neuron “k” from the output layer.
6. To calculate the sensitivity of the neurons from the output layer based on error

showed at the output with the targeted output vector is defined as

18 C. Pinzón et al.

dp = (dp
1 , ...,dp

k ,dp
M)T (6)

δ p
k =− ∂E p

∂ (net p
k)

= (dp
k − yp

k) =
∂ fk(net p

k)
∂net p

k
(7)

7. To calculate the sensibility of the neurons from the hidden layer is given by

δ p
j = f ′j(net p

j)
M

∑
k=1

δ p
k wp

k j (8)

8. To update the weights and the bias of the connections that connect the neurons
from the hidden layer with the output layer

∆wp
k j(t +1) = ηδ p

k yp
j + µ∆wp

k j(t) (9)

∆θ p
k (t +1) = ηδ p

k + µ∆θ p
k (t) (10)

η : Learning rate controls the size of the change of the weights in each iteration.
µ: Momentum term allows to filter the oscillations in the surface of the error
caused by the learning rate and considerably accelerates the convergence of the
weights.

9. To upgrade the weights and the thresholds of the connections between the neu-
rons of the hidden layer with the input layer

∆wp
ji(t +1) = ηδ p

j xp
i + µ∆wp

ji(t) (11)

∆θ p
j (t +1) = ηδ p

j + µ∆θ p
j (t) (12)

10. To calculate the error

E p =
1
2

M

∑
k=1

(dp
k − yp

k)2, (13)

where dP
k is the desired output of the neuron “k” from the output layer according

to a “p” pattern. Since this term reflects the adaptation capacity of the neural
network, it is necessary to keep it in mind to determine if the neural network
learns in a satisfactory way or not. As previously explained the mixture is com-
posed of two multilayer perceptrons, one of then uses sigmoidal function and
the other tangential function. In this sense, the algorithm has to been adapted by
considering the activation functions, the sigmoidal or the tangential function.

• The Sigmoidal activation function has its range within the interval [0,1]; It
is used to detect if the request is an attack or not. The value 0 represents an
illegal re-quest and 1 a legal request. The Sigmoidal activation function is
the activation function most used for classifications between two groups. This
function has drawbacks that it works well for binary classifications.

An Agent Based Architecture for Protecting Ubiquitous Databases 19

That is:

f (x) =
1

1+ e−ax (14)

a = 1. For the weights used to connect a hidden layer with an output layer; the
updating formula of the weights in series is given by “p” pattern as follows.

∆wp
k j(t +1) = ηδ P

k yp
j + µ∆wP

k j(t) = η(dp
k − yp

k)(1− yp
k)yp

k yp
j + µ∆wp

k j(t)
(15)

For the bias associated to the neurons from the output layer, given a “p” pat-
tern, the updating formula of the weights in series is given by

∆θ p
k (t +1) = ηδ p

k + µ∆θ p
k (t) = η(dp

k − yp
k)(1− yp

k)yp
k + µ∆θ p

k (t) (16)

For the weights used to connect the input layer with the hidden layer; the
updating of the weights in series is give a “p” pattern is given by

∆wp
ji(t +1) = η(1− yp

j)y
p
j (

M

∑
k=1

δ p
k wk j)x

p
i + µ∆wp

ji(t) = (17)

= η(1− yp
j)y

p
j (

M

∑
k=1

(dp
k − yP

k)(1− yp
k)yp

k wk j)x
p
i + µ∆wp

ji(t)

For the bias associated to the neurons from the hidden layer, given “p pattern;
the update is given by

θ p
j (t +1) = θ p

j (t)+η(1−yp
j)y

p
j (

M

∑
k=1

δ p
k wk j)+ µ(θ p

j (t)−θ p
j (t−1)) = (18)

θ p
j (t)+η(1− yp

j)y
p
j (

M

∑
k=1

(dp
k − yp

k)(1− yp
k)yp

k wk j)+ µ(θ P
j (t)−θ p

j (t−1))

• The hyperbolic tangential function has its range in the interval [-1,1]. It is used
to detect if the request is an attack, not attack or suspicious. The hyperbolic
tangential function allows more possible cases than the sigmoidal function.
The value 0 represents illegal request, value 1 represent legal request and value
-1 of those suspicious requests. Hyperbolic tangential function is suitable for
classifying in three groups. Hyperbolic tangential activation function is given
by

f (x) = tanh(x) =
ex− e−x

ex + e−x (19)

20 C. Pinzón et al.

For the weights used to connect a hidden layer with an output layer, the up-
dating formula of the weights in series is given by a “p” pattern is

∆wp
k j(t +1) = ηδ p

k yp
j + µ∆wp

k j(t) = η(dp
k − yp

k)(1− yp
k)yp

k yp
j + µ∆wp

k j(t)
(20)

For the bias associated to the neurons from the output layer, given a “p” pat-
tern; the updating formula of the weights in series is defined as

∆θ p
k (t +1) = ηδ p

k + µ∆θ p
k (t) = η(dp

k − yp
k)(1− (yp

k)2)+ µ∆θ p
k (t) (21)

For the weights used to connect the input layer with the hidden layer, the
updating of the weights in series is given by a “p” pattern is defined as

∆wp
ji(t +1) = η(1− (yp

j)
2)(

M

∑
k=1

δ p
k wk j)x

p
i + µ∆wp

ji(t) (22)

= η(1− (yp
j)

2)(
M

∑
k=1

(dp
k − yp

k)(1− yp
k)yp

k wk j)x
p
i + µ∆wp

ji(t)

For the bias associated to the neurons from the hidden layers, given a “p”
pattern, the updating in series is defined as

θ p
j (t +1) = θ p

j (t)+η(1−(yp
j)

2)(
M

∑
k=1

δ p
k wk j)+µ(θ p

j (t)−θ p
j (t−1)) = (23)

θ p
j (t)+η(1− (yp

j)
2)(

M

∑
k=1

(dp
k − yp

k)(1− (yp
k)2)wk j)+ µ(θ p

j (t)−θ p
j (t−1))

It is intended to detect attacks, so if one only network with a sigmoidal activa-
tion function was used, then the result provided by the network would tend to
be an attack or not, and no suspects would be detected. On the other hand, if
only one network with a hyperbolic tangent activation was used, then a poten-
tial problem could exist in which the majority of the results would be identified
as a suspect although they were clearly an attack or not. The mixture provides
a more efficient configuration of the networks, since the global result is deter-
mined by merging the two filters. This way, if the two networks classify the
user request as an attack, so too will the mixture; and if both agree that it is
not an attack, the mixture will as well be. If there is no concurrence, the sys-
tem uses the result of the network with the least error in the training process
or classifies it as a suspect. In the reuse phase, the two networks are trained
by a back-propagation algorithm for the same set of training patterns, using a
Sigmoidal activation function (which will take values within [0,1], where 0 =
Illegal and 1 = legal) for a Multilayer Perceptron and a hyperbolic tangent ac-

An Agent Based Architecture for Protecting Ubiquitous Databases 21

tivation function for the other Multilayer Perceptron (which take values within
[-1,1], where -1 = Suspect, 0 = illegal and 1 = legal). The response of both net-
works is combined, to obtain the mixture of networks denoted by y2; where
the superscript indicates the number of mixtured networks.

y2 =
1

∑2
r=1 e−|1−r|

2

∑
r=1

yre−|1−r| (24)

The number of neurons in the output layer for both networks is 1, and is
responsible for deciding whether or not there is an attack. The error of the
training phase for each of the neural networks can be quantified using (24),
where P is the total number of training patterns.

Error =
1
P

P

∑
i=1

∣∣∣∣
ForecastP−TargetP

TargetP

∣∣∣∣ (25)

5 Experimental Results and discussion

A case study has been proposed to test the effectiveness of a SiC prototype. The
prototype has been evaluated by means of a previously developed multiagent sys-
tem, installed in a geriatric residence [18]. The implemented multiagent system im-
proves the security of the patients, facilitates the carers’ activity and guarantees an
adequate level of efficiency. The system has been developed in a distributed en-
vironment containing devices such as PDA, notebook computers and accessed via
wireless. A back-end database stores and supplies information. The database man-
ager is Oracle. The actors in the scenario such as nurses, doctors, patients, worker
social and other employees can be seen in Figure 6. The medical staff in charge of
patients’s care was integrated by 2 doctors, 10 nurses and 1 social worker. The num-
ber of patients under the monitoring and attention of the multi-agent system was
30. In the case of the nurses, each nurse was equipped with a PDA, thus a total of
10 PDAs execute queries on the database during the working day. With these data,
we prepared the attack scenario. The performance of the test required to incorporate
equipments and mobile devices with connection via wireless and LAN. Equipments
include 2 workstations and 3 PDAs. The test has been carried out during 30 working
days without interruption.

During the execution of the multiagent system, several types of SQL queries were
carried on the database. The queries were related to the patients’ treatments, the
scheduling of the working day of the nurses, etc. Most of the queries were executed
from PDAs. The PDAs are used by doctors and nurses to accomplish their tasks.
To facilitate the evaluation of the prototype, we focused on the role of the nurse.
The main volume of queries were generated each time that a plan was assigned to a
nurse. The plans changed due to different reasons during their execution and these
changes increased the number of queries on the database. When a nurse starts and

22 C. Pinzón et al.

Fig. 6 Abstract scenario of the real environment (Geriatric Residence)

finalizes a task, a response is send through a SQL query. The nurses have direct
access to the database system by means of the application interface on the PDAs.
The strategy was based on the execution of crafted queries from 2 PDAs. These
PDAs were fixed with a similar user interface with the nurses’ PDAs, but these
have capacity to execute tainted queries. When a query is executed from the PDA
of attack, this query carries out a type of SQL injection that has to be captured,
analyzed and classified as legal, illegal or suspicious. The FingerPrint agents and
Anomaly agents were distributed in the 2 workstations. As the test was carried out
on the real medical database, a special mechanism has been built to guarantee the
integrity of the database. All the queries executed both by the nurses’ PDA and the
attack PDAs are examined and classified. The test was conducted with a total of
12 PDAs available, 10 PDAs assigned to the active nurses and 2 PDAs to execute
attacks, a total of 10,200 queries were sent to the medical database. Each nurse’s
PDA executed around 30 daily queries and, during the 30 days of the test, 9,000 legal
queries were carried out. In the case of the two attack PDAs, each PDA executed
20 illegal daily queries. These PDAs sent 40 events of attack during a working day.
Throughout the 30 days of the test, a total of 1,200 events of attack were targeted to

An Agent Based Architecture for Protecting Ubiquitous Databases 23

the medical database. The volume of queries during the test period allows building
a case memory to validate the strategy proposed.

To check the validity of the proposed model, we elaborated a series of tests,
which were executed on a memory of cases, specifically developed for these tests,
and which generated attack consults. The results obtained are promising, improving
in many cases those obtained with other existing techniques, which let us conclude
that SiC can be considered as a serious alternative to detect and predict SQL in-
jection attacks. The classification system integrated within the Anomaly agent pro-
vides the results illustrated in Table 3, which are promising. It is possible to observe
different techniques for predicting attacks at the database layer and the errors as-
sociated with misclassifications. All the techniques presented in Table 3 have been
applied under similar conditions to the same set of cases, taking the same problem
into account in order to obtain a new case common to all the methods. Note that
the technique proposed in this article provides the best results, with an error of only
0.5% of the cases.

Table 3 Results obtained after testing different classification techniques

Forecasting Techniques Sucessful (%) Approximated Time (secs)

Anomaly CBR-BDI Agent (mixture NN) 99.5 2
Back-Propagation Neural Networks 99.2 2
Bayesian Forecasting Method 98.2 11
Exponential Regression 97.8 9
Polynomial Regression 97.7 8
Linear Regression 97.6 5

As shown in Table 3, the Bayesian method is the most accurate statistical method,
since it is based on the likelihood of the events observed. But it has the disadvantage
of determining the initial parameters of the algorithm, although it is the fastest of
the considered statistical methods. Taking into account, the errors obtained using
different methods, after the neural networks and Bayesian methods we found that
the regression models could also be used. Due to the non linear behaviour of the
hackers, linear regression offers the worst results, followed by the polynomial and
exponential regression. This can be explained by looking at hacker behavior: as the
hackers break security measures, the time for their attacks to obtain information
decreases exponentially.

The empirical results show that the best methods are those that involve the use of
neural networks and if we consider a mixture of two neural networks, the predictions
are notably improved. These methods are more accurate than statistical methods
for detecting attacks to databases because the behavior of the hacker is not linear,
dynamic and chaotic.

The advantage of using a mixture of neural networks improves performance that
provides other classification techniques, but also improves performance that can
provide the neural networks on an individual basis. The mixture has the advantage

24 C. Pinzón et al.

that the number of cases where the classifier agent could not decide is smaller and in
few cases the mediation by an human expert human was required. We could check
the decision of the mixture of networks with the verdict of an human expert for
those cases which a single network did not decide and both the mixture of networks
and the human expert were in agreement on 99% of cases. Figure 7 depicts the
effectiveness of the classification schemes both for the networks with distinct acti-
vation function work on an individual basis and the effectiveness of the mixture of
networks.

Figure 8 shows the success of the predictions for the number of training pat-
terns presented in Table 4. As observed, with a large number the training patterns,
percentage of successful prediction could be also improved.

Table 4 Successful (%) depending on the number of training patterns

Number of patterns of training Successful (%)

1000 99.5
900 99.1
700 98.5
500 98.6
300 96.8
100 89

Fig. 7 Effectiveness in the classification of the networks on an individual basis and the mixture of
networks

When the number of patterns for training the neural network increases, the pre-
diction error decreases. It is to be noted that the number of training patterns are the

An Agent Based Architecture for Protecting Ubiquitous Databases 25

Fig. 8 Successful percentage vs. number of patterns

result after applying filters such as the similarity based algorithm and the correlation
function. These filters reduce the quantity of cases meaningfully in order to improve
the performance during the training stage.

6 Conclusions

The problem of SQL injection attacks on databases presents a serious threat against
information systems. This Chapter has presented a novel solution, consisting of a
new hierarchical multiagent architecture for detecting SQL injection attacks, which
combines the advantages of multiagent systems, such as autonomy and distributed
problem solving, with the adaptation and learning capabilities of the CBR systems.
The SiC architecture proposed a new perspective in the strategies for detecting and
predicting SQL injection attacks, since the existing approaches are based on cen-
tralized strategies. The SiC architecture provides a distributed hierarchical structure,
which allows a more efficient balance and distribution of the tasks involved in the
problem of detecting and classifying attacks to databases by means of SQL injec-
tion. The core of the architecture is a special type of CBR-BDI agent, which assures
great capacities for learning and adaptation. This agent is a classifier agent that, sup-
ported by the philosophy of the case-based reasoning mechanisms, proposes a new
strategy, based on the use of past experiences, to classify SQL injection attacks. This
strategy differs in its conception from the existing ones. Moreover, it incorporates
the prediction capabilities that characterize neural networks.

26 C. Pinzón et al.

The results obtained illustrated a high prediction capacity for the CBR-BDI clas-
sifier agents, about a 99.5%, which notably improves the efficiency of the existing
solutions. A key factor for the success of the SiC architecture relies on the quality
of the cases stored in the memory of cases, requiring a dating back of at least 4
weeks for a correct prediction. The prediction strategy based on a mixture of neu-
ral networks presented a clear advantage: the number of problems analyzed where
the classifier agent can not provide an automatic decision is notably reduced and,
consequently, only in few cases the mediation of an expert human was required. The
experimental results indicate that around 99% of cases, both the mixture of networks
and the human expert were in agreement.

Finally, the SiC architecture combines techniques based on anomaly detection
and misuse detection. This combination achieves a robust solution to block any type
of SQL injection attack. The SiC multiagent architecture provides flexibility and
scalability to protect ubiquitous databases in new computational environments. The
results are promising and it is worthy to conclude that the SiC architecture could
improve the results provided by current technologies. The next step is to have a full
solution where all the type of agents in the architecture can carry out their tasks in
order to improve the effectiveness and the performance in a global way.

Acknowledgements This development has been partially supported by the Spanish Ministry of
Science project TIN2006-14630-C03-03.

References

1. Aamodt A. Plaza E (1994) Case-based reasoning: foundational issues, methodological varia-
tions, and system approaches. AI Communications. Vol. 7. pp. 39-59.

2. Abraham A, Jain R, Thomas J, Han S Y (2007) D-SCIDS: Distributed soft computing in-
trusion detection system. Journal of Network and Computer Applications, Elsevier. Vol. 30(1)
pp. 81-98

3. Agrawal R, Kiernan J, Srikant R, Xu Y (2002) Hippocratic databases. In: 28th inter-national
conference on Very Large Data Bases. Hong Kong. pp.143-154.

4. Anley C (2002) Advanced SQL Injection in SQL Server Applications. NGS Software
http://www.nextgenss.com/papers/advanced sql injection.pdf. Accessed 10 April 2007

5. Application Security Inc (2005) Protecting the Crown Jewels. http://www.appsecinc.com/cgi-
bin/search.pl?Terms=crown. Accessed 12 April 2008

6. Application Security Inc (2007) Introduction to Database and Application Worms.
http://www.appsecinc.com/presentations/Database Application Worms.pdf. Accessed 10
April 2008

7. Bajo J, De Luis A, González A, Saavedra A, Corchado J M (2006) A Shopping Mall Mul-
tiagent System: Ambient Intelligence in Practice. In: 2nd International Workshop on Ubi-
quitous Computing & Ambient Intelligence. pp. 115-125.

8. Bellifemine F, Poggi A, Rimassa G (1999) Jade: A FIPA-compliant agent framework. In:
Proceedings of PAAM-1999, pp. 97-108.

9. Bergenti F, Poggi A (2001) LEAP: a FIPA Platform for Handheld and Mobile Devices. In:
Proceedings of the ATAL 2001 Conference. Seattle, USA.

10. Bertino E, Sandhu R (2005) Database Security-Concepts, Approaches, and Challenges. In:
IEEE Computer Society, Los Alamitos, USA. Vol. 2. pp. 2-9.

An Agent Based Architecture for Protecting Ubiquitous Databases 27

11. Boyd S W, Keromytis A D (2004) SQLrand: Preventing SQL Injection Attacks. In: Applied
Cryptography and Network Security. Vol. 3089 pp. 292-302.

12. Bratman M E (1987) Intention, Plans, and Practical Reason, Harvard University Press, Cam-
bridge, MA.

13. Breach Security, Inc (2007) The Web Hacking Incidents Database. http://www.breach.com/.
Accessed 02 April 2008

14. Buehrer G, Weide B W, Sivilotti P A G (2005) Using parse tree validation to prevent SQL
injection attacks. In: 5th international workshop on Software engineering and middleware.
ACM, New York. pp. 106-113.

15. Carrascosa C, Bajo J, Julian V, Corchado J M, Botti V (2008) Hybrid multi-agent architecture
as a real-time problem-solving model. Expert Systems with Applications. Vol. 34(1). pp. 2-
17.

16. Christensen A S, Moller A, Schwartzbach M I (2003) Precise Analysis of String Expressions.
In: 10th International Static Analysis Symposium. Springer-Verlag. pp. 1-18.

17. Cook R, Rai S (2005) Safe query objects: statically typed objects as remotely executable
queries. In: 27th international conference on Software engineering. ACM. St. Louis, USA.
pp. 97-106.

18. Corchado J M, Bajo J, Abraham A (2008) GerAmi: Improving Healthcare Delivery in Geri-
atric Residences. Intelligent Systems, IEEE. vol. 23 pp.19-25

19. Corchado J M, Bajo J, De Paz Y, Tapia D (2008) Intelligent Environment for Monitoring
Alzheimer Patients, Agent Technology for Health Care. In: Decision Support Systems. Vol.
34(2) pp.382-396.

20. Foundation for Intelligent Physical Agents. http://www.fipa.org. Accessed 15 August 2007
21. Georgeff M P, Lansky A L (1987) Reactive Reasoning and Planning. In: American Associa-

tion of Artificial Intelligence. Seattle, USA. pp. 677-682.
22. Glez-Bedia M, Corchado J M (2002) A Planning Strategy Based on Variational Calculus for

Deliberative Agents. In: Computing and Information Systems Journal. Vol. 10(1) pp. 2-14.
23. Gould C, Su Z, Devanbu P (2004) JDBC Checker: A Static Analysis Tool for SQL/JDBC

Applications. In: 26th International Conference on Software Engineering. IEEE Computer
Society, Washington, DC, USA. pp. 697-698.

24. Halfond W, Orso A (2005) AMNESIA: Analysis and Monitoring for Neutralizing SQL-
injection Attacks. In: 20th IEEE/ACM international Conference on Automated software en-
gineering. ACM, New York. pp. 174-183.

25. Halfond W G, Viegas J, Orso, A. (2006) A Classification of SQL-Injection Attacks and Coun-
termeasures. In: IEEE International Symposium on Secure Software Engineering. Arlington,
USA.

26. Hayat Z, Reeve J, Boutle C (2007) Ubiquitous security for ubiquitous computing. In: Elsevier
Advanced Technology Publications, Oxford, United Kingdom, 172-178

27. Huang Y, Huang S, Lin T, Tsai C (2003) Web application security assessment by fault injec-
tion and behavior monitoring. In: 12th international conference on World Wide Web. ACM,
New York, USA. pp. 148-159

28. Kosuga Y, Kono K, Hanaoka M, Hishiyama M, Takahama Y (2007) Sania: Syntactic and
Semantic Analysis for Automated Testing against SQL Injection. In: 23rd Annual Computer
Security Applications Conference. IEEE Computer Society. pp. 107-117

29. Kruegel C, Vigna G (2003) Anomaly detection of web-based attacks. In: 10th ACM confer-
ence on Computer and communications security, ACM, New York. pp. 251-261.

30. Laza R, Pavón R, Corchado J M (2003) A Reasoning Model for CBR BDI Agents Using
an Adaptable Fuzzy Inference System. In: 10th Conference of the Spanish Association for
Artificial Intelligence. Springer. Vol. 3040 pp. 96-106.

31. Litchfield D (2005) Data Mining with SQL Injection and Inference, NGS Software.
http://www.ngssoftware.com/research/papers/sqlinference.pdf. Accessed 10 April 2007.

32. Litchfield D, Anley C, Heasman J, Grindlay, B (2005) The Database Hacker’s Handbook:
Defending Database Servers. John Wiley, New York.

33. Maurer U (2004) The role of cryptography in database security, In: ACM SIGMOD interna-
tional conference on Management of data. ACM, New York. pp. 5-10.

28 C. Pinzón et al.

34. McClure R A, Krger I H (2005) SQL DOM: compile time checking of dynamic SQL state-
ments. In: 27th international conference on Software engineering. ACM, New York. pp. 88-
96.

35. Mukkamala S, Sung A H, Abraham A (2005) Intrusion detection using an ensemble of in-
telligent paradigms. Journal of Network and Computer Applications, Elsevier. Vol. 28(2) pp.
167-182.

36. Pervasive Software Inc (2003) Implementing Security Best Practices for HIPAA with Perva-
sive.SQL. http://www.msmiami.com/custom/downloads/Pervasive HIPAASecurity Paper.pdf.
Accessed 10 April 2008

37. Pinzón C, De Paz Y, Cano R (2008) Classification Agent-Based Techniques for Detecting
Intrusions in Databases. In: 3rd International Workshop on Hybrid Artificial Intelligence Sys-
tems.

38. Ramasubramanian P, Kannan A (2004) Quickprop Neural Network Ensemble Forecasting a
Database Intrusion Prediction System. Neural Information Processing. Vol. 5 pp. 847-852

39. Rescorla E, Schiffman A (1999) The Secure HyperText Transfer Protocol RFC Editor, United
States. http://www.rfc-editor.org/rfc/rfc2660.txt. Accessed 10 January 2008

40. Rieback M R, Crispo B, Tanenbaum A S (2006) Is Your Cat Infected with a Computer Virus?.
In: Fourth Annual IEEE International Conference on Pervasive Computing and Communica-
tions. IEEE Computer Society. Washington, DC, USA. pp. 169-179.

41. Rieback M R, Crispo B, Tanenbaum A S (2006) RFID Malware: Truth vs. Myth. IEEE Secu-
rity and Privacy. Vol. 4(4) pp. 70-72.

42. Rieback M R, Simpson P N, Crispo B, Tanenbaum A S (2006) RFID malware: Design prin-
ciples and examples. In: Pervasive and Mobile Computing. Vol. 2(4) pp. 405-426.

43. Rietta F (2006) Application layer intrusion detection for SQL injection. In: 44th annual South-
east regional conference. ACM, New York. pp. 531-536.

44. Skaruz J, Seredynski F (2007) Recurrent neural networks towards detection of SQL attacks.
In: 21th International Parallel and Distributed Processing Symposium. IEEE International.
pp. 1-8.

45. Thuraisingham B (2002) Data mining, national security, privacy and civil liberties. ACM,
New York, Vol. 4(2) pp. 1-5.

46. Valeur F, Mutz D, Vigna G (2005) A Learning-Based Approach to the Detection of SQL
Attacks. In: Proceedings of the Conference on Detection of Intrusions and Malware and Vul-
nerability Assessment. Vienna, Austria. pp. 123-140

47. Wassermann G, Su Z (2004) An Analysis Framework for Security in Web Applications. In:
FSE Workshop on Specification and Verification of Component-Based Systemspp. pp.70-78.

48. Wooldridge M, Jennings N R (1995) Intelligent Agents: Theory and Practice. Knowledge
Engineering Review. Vol. 10(2) 115-152.

49. Woolridge M, Wooldridge M J (2002) Introduction to Multiagent Systems. John Wiley, New
York.

50. Wu J, Wang C, Wang J, Chen S (2006) Dynamic Hierarchical Distributed Intrusion Detection
System Based on Multi-Agent System. In: EEE/WIC/ACM international conference on Web
Intelligence and Intelligent Agent Technology. IEEE International. pp. 89-93.

51. Xiong L, Chitti S, Liu L (2007) Preserving data privacy in outsourcing data aggregation ser-
vices. In: ACM Transactions on Internet Technology. New York. Vol. 7(3), pp. 17.

52. Zaidenberg S, Reignier P, Crowley, J L (2007) An Architecture for Ubiquitous Applications.
In: 1st International Joint Workshop on Wireless Ubiquitous Computing. Vol. 1 pp. 86-95.

