
Sensors 2009, 9, 3981-4004; doi:10.3390/s90503981 

 

sensors 
ISSN 1424-8220 

www.mdpi.com/journal/sensors 

Article 

Multi-Objective Differential Evolution for Automatic Clustering 
with Application to Micro-Array Data Analysis 
 
Kaushik Suresh 1, Debarati Kundu 1, Sayan Ghosh 1, Swagatam Das 1, Ajith Abraham 2 and 
Sang Yong Han 3,* 
 
1 Dept. of Electronics and Telecommunication Engg, Jadavpur University, Kolkata, India; E-Mails: 

kaushik_s1988@yahoo.com; kundu.debarati@gmail.com; sayan88tito@gmail.com; 

swagatamdas19@yahoo.co.in 
2 Norwegian University of Science and Technology, Norway; E-Mail: ajith.abraham@ieee.org 
3 School of Computer Science and Engineering Chung-Ang University, Seoul, Korea 

 

* Author to whom correspondence should be addressed; E-Mail: hansy@cau.ac.kr; Tel.: +82-2-820-

5327; Fax: +82-2-825-6996 

 

Received: 1 April 2009; in revised form: 19 May 2009 / Accepted: 22 May 2009 /  

Published: 25 May 2009 

 

 
Abstract: This paper applies the Differential Evolution (DE) algorithm to the task of 

automatic fuzzy clustering in a Multi-objective Optimization (MO) framework. It 

compares the performances of two multi-objective variants of DE over the fuzzy clustering 

problem, where two conflicting fuzzy validity indices are simultaneously optimized. The 

resultant Pareto optimal set of solutions from each algorithm consists of a number of non-

dominated solutions, from which the user can choose the most promising ones according to 

the problem specifications. A real-coded representation of the search variables, 

accommodating variable number of cluster centers, is used for DE. The performances of 

the multi-objective DE-variants have also been contrasted to that of two most well-known 

schemes of MO clustering, namely the Non Dominated Sorting Genetic Algorithm (NSGA 

II) and Multi-Objective Clustering with an unknown number of Clusters K (MOCK). 

Experimental results using six artificial and four real life datasets of varying range of 

complexities indicate that DE holds immense promise as a candidate algorithm for devising 

MO clustering schemes.  
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1. Introduction 
 

Optimization-based automatic clustering algorithms greatly rely on a cluster validity function 

(optimization criterion) whose optima appear as proxies for the unknown “correct classification” in a 

previously unhandled dataset [1]. Different formulations of the clustering problem vary according to 

the optimization criterion used. Most existing clustering methods, however, attempt to optimize just 

one such clustering criterion modeled by a single cluster validity index. This often results in 

considerable observable discrepancies between the solutions produced by different algorithms on the 

same dataset. A single cluster validity measure is hardly able to judge the correctness of clustering for 

a wide variety of real life datasets. A wrong choice of the validity measure may lead to poor clustering 

results. Thus, the single-objective clustering method may prove futile (as judged by means of expert’s 

knowledge) in a context where the criterion employed is inappropriate. In situations where the best 

solution corresponds to a tradeoff between different conflicting objectives, common sense advocates a 

multi-objective framework for clustering. In the case of iterative optimization algorithms, it is possible 

that a single-objective approach might visit such tradeoff solutions during a run, but would not 

recognize them as good and discard them.  

Although there has been a plethora of papers reporting several single-objective evolutionary 

clustering techniques (a comprehensive survey of which can be found in [1,2]), very little research has 

been undertaken so far towards the application of evolutionary multi-objective optimization algorithms 

(EMOA) for pattern clustering [3,4]. A state-of-the-art literature survey indicates that DE has already 

proved itself as a promising candidate in the field of evolutionary multi-objective optimization (EMO) 

[5-8]. Earlier it has also been successfully applied to single-objective partitional clustering [9-11].  

The work reported in [3] is based on Deb et al.’s celebrated NSGA (Non Dominated Sorting genetic 

Algorithm)-II [12] and the clustering method described in [4] is based on PESA (Pareto Envelope 

based Selection) II [13]; both algorithms are multi-objective variants of the Genetic Algorithm (GA). 

However, the multi-objective variants of DE have not been applied to the general data clustering 

problems till date, to the best of our knowledge. This paper primarily compares the performances of 

two most representative multi-objective DE algorithms on the multi-objective fuzzy clustering 

problem. The multi-objective DE-variants considered here are namely the Multi-objective DE 

(MODE) [6] and DE for Multi-objective Optimization (DEMO) [7] owing to their promising results 

over many benchmark multi-objective optimization problems. Since DE, by nature, is a real-coded 

population-based optimization algorithm, we here resort to a centroid-based representation scheme for 

the search variables. Note that in contrast to single objective optimization that yields a single best 

solution, in MOO, a number of often conflicting objective functions are optimized simultaneously and 

thus an MOO algorithm, in general, ends up with a number of Pareto optimal solutions. 

None of these Pareto optimal solutions can be improved upon an objective any further without 

degrading it on another. Here we consider the Xie-Beni index [14] and the Fuzzy C Means (FCM) 
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measure (Jq) [15] as the objective functions.  Note that any other and any number of objective 

functions could be used in the proposed MOO clustering framework. The performance of the multi-

objective DE-variants have also been contrasted with two best-known EMOA-based clustering 

methods to date. The first one of these is MOCK, by Handl and Knowles [4], while the second one is 

based on NSGA II and was used by Bandyopadhyay et al. for pixel clustering in remote sensing 

satellite image data [3]. Although we experimented with a large variety of datasets, here we report the 

results for ten representative datasets including some microarray yeast sporulation data [16]. 

 

2. Multi-Objective Optimization with DE 
 
2.1. The MO Problem 

 

In many practical or real life problems, there are many (possibly conflicting) objectives that need to 

be optimized simultaneously. Under such circumstances there no longer exists a single optimal 

solution but rather a whole set of possible solutions of equivalent quality. The field of Multi-objective 

Optimization (MO) [17-19] deals with simultaneous optimization of multiple, possibly competing, 

objective functions. The MO problems tend to be characterized by a family of alternatives, which must 

be considered equivalent in the absence of information concerning the relevance of each objective 

relative to the others. 

The family of solutions of an MO problem is composed of the parameter vectors, which cannot be 

improved in any objective without causing degradation in at least one of the other objectives. This 

forms the central idea of Pareto-optimality. The concepts of dominance and Pareto-optimality may be 

presented more formally in the following way [18,19]: 

 

Definition 1: Consider without loss of generality the following multi-objective optimization problem 

with m decision variables x (parameters) and n objectives y:               

Maximize: )),....,(),....,,....,(()( 111 mnm xxfxxfXfY 


                            (1) 

where PxxX T
m  ],....,[ 1


and  OyyY T

m  ],....,[ 1


and where X


 is called decision (parameter) vector, P is 

the parameter space, Y


 is the objective vector, and O is the objective space. A decision vector PA


is 

said to dominate another decision vector PB


 (also written as BA





) if and only if: 

:},...,1{ ni     )()( BfAf ii


  

 :},...,1{ nj    )()( BfAf jj


                                                         (2) 

Based on this convention, we can define non-dominated, Pareto-optimal solutions as follows: 

 

Definition 2:  Let PA


be an arbitrary decision vector.  
(a) The decision vector A


 is said to be non-dominated regarding the set PP ' if and only if there is no 

vector in 'P which can dominate A


. Formally, 

                                                      (3) 
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(b) The decision (parameter) vector A


 is called Pareto-optimal if and only if A


 is non-dominated 

regarding the whole parameter space P . 

 

2.2. The Differential Evolution (DE) Algorithm 

 

DE [20, 21] is a population-based global optimization algorithm that uses a real-coded 

representation. Its starts with a population of NP real-coded search variable vectors initialized 

randomly in the feasible search space. The i-th individual (parameter vector or chromosome) of the 

population at generation (time) G is a D-dimensional vector containing a set of D optimization 

parameters:   

],....,[ ,,,2,,1,, GDiGiGiGi ZZZZ 


                                                      (4) 

Now, in each generation, a donor GiY ,


 is created. The method of creating this donor vector 

demarcates between the various DE schemes. In one of the earliest variants of DE, now called 

DE/rand/1 scheme, to create GiY ,


 for each i-th member, three other parameter vectors (say the 1r , 2r , 

and 3r -th vectors such that ],1[,, 321 NPrrr  and 321 rrr   are chosen at random from the current 

population.    

Next the difference of any two of the three vectors is multiplied by a scalar number F and the scaled 
difference is added to the third one, whence we obtain the donor vector GiY ,


. The process for the j-th 

component of the i-th vector may be expressed as: 

)( ,,,,,,,, 321 GjrGjrGjrGji ZZFZY                                                      (5)  

Next a crossover operation takes place to increase the potential diversity of the population. We use 

‘binomial’ crossover in which case the number of parameters inherited from the mutant has a (nearly) 
binomial distribution. Thus for each target vector GiZ ,


, a trial vector GiR ,


is created in the following 

fashion: 

GjiR ,,  = GjiY ,, ,  if ( Crrand ji )1,0(, or )randjj   

GjiZ ,, , otherwise                                                                           (6)  

for j = 1, 2, ….., D and randj (0, 1) ]1,0[ is the j-th evaluation of a uniform random number generator. 

],....,2,1[ Djrand  is a randomly chosen index which ensures that GiR ,


gets at least one component from 

GiY ,


. To keep the population size constant over subsequent generations, the next step of the algorithm 

calls for ‘selection’ in order to determine which one between the target vector and trial vector will 

survive in the next generation i.e. at the next generation G = G+1. If the trial vector yields a better 

value of the fitness function, it replaces its target vector in the next generation; otherwise the parent is 

retained in the population: 

1,GiZ


GiR ,


       if  )()( ,, GiGi ZfRf


  

GiZ ,


       if )()( ,, GiGi ZfRf


                                                  (7) 

where f(.) is the function to be minimized.  
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2.3. The Multi-Objective Variants of DE 

 

We consider here the two most promising multi-objective variants of DE: the Multi-Objective DE 

(MODE) [6] and the DE for Multi-objective Optimization (DEMO) [7].  We briefly discuss here the 

outline of the algorithms instead of reiterating their details, already available in the cited literature. 

 
1) MODE: MODE was proposed by Xue et al. in [6]. This algorithm uses a variant of the original DE, 

in which the best individual is adopted to create the offspring. A Pareto-based approach is introduced 

to implement the selection of the best individual. If a solution is dominated, a set of non-dominated 

individuals can be identified and the “best” turns out to be any individual (randomly picked) from this 
set. Also, the authors adopt (  ) selection, Pareto ranking and crowding distance in order to 

produce and maintain well-distributed solutions. Xue et al. used MODE to solve five high-dimensional 

unconstrained problems with 250,000 evaluations and the results are compared only to those obtained 

by SPEA [19]. 

 

2) DEMO: DEMO was proposed by Robic and Filipic [7]. This algorithm combines the advantages of 

DE with the mechanisms of Pareto-based ranking and crowding distance sorting. DEMO only 

maintains one population and it is extended when newly created candidates take part immediately in 

the creation of the subsequent candidates. This enables a fast convergence towards the true Pareto 

front, while the use of non-dominated sorting and crowding distance (derived from the NSGA-II [1]) 

of the extended population promotes the uniform spread of solutions.     DEMO is implemented in 

three variants (DEMO/parent, DEMO/closest/dec and DEMO/closest/obj) [7]. Below we provide a 

pseudo-code for MODE/parent: 

1. Evaluate the initial population P of random individuals. 

2. While stopping criterion not met, do: 
2.1. For each individual iX


(i = 1 . . . NP) from P repeat: 

(a) Create candidate iU


from parent iX


. 

(b) Evaluate the candidate. 

(c) If the candidate dominates the parent, the candidate replaces the parent. 

If the parent dominates the candidate, the candidate is discarded. 

Otherwise, the candidate is added in the population. 

2.2. If the population has more than population size NP individuals, truncate it. 

2.3. Randomly enumerate the individuals in P. 

In DEMO the candidate replaces the parent if it dominates it. If the parent dominates the candidate, 

the candidate is discarded. Otherwise (when the candidate and the parent is non-dominated with regard 

to each other), the candidate is added to the population. This step is repeated until NP number of 

candidates is created. After that, we get a population of the size between NP and 2.NP. If the 

population has enlarged, we have to truncate it to prepare it for the next step of the algorithm. 

The truncation consists of sorting the individuals with non-dominated sorting and then evaluating 

the individuals of the same front with the crowding distance metric. The truncation procedure keeps in 

the population only the best NP individuals (with regard to these two metrics). The described 
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truncation is derived from NSGA-II. DEMO incorporates two crucial mechanisms. The immediate 

replacement of the parent individual with the candidate that dominates it is the core of DEMO. The 

newly created candidates that enter the population (either by replacement or by addition) instantly take 

part in the creation of the following candidates. This emphasizes elitism within reproduction, which 

helps achieving the first goal of multi objective optimization – convergence to the true Pareto front. 

The second mechanism is the use of non-dominated sorting and crowding distance metric in truncation 

of the extended population. Besides preserving elitism, this mechanism stimulates the uniform spread 

of solutions. This is needed to achieve the second goal – finding as diverse non-dominated solutions as 

possible. DEMO’s selection scheme thus efficiently pursues both goals of multi objective 

optimization.  

The other two variants were inspired by the concept of Crowding DE as recently introduced by 

Thomsen [22]. When optimizing functions with many optima, we would sometimes like not only to 

find one optimal point, but also discover and maintain multiple optima in a single algorithm run. For 

this purpose, Crowding DE can be used. Crowding DE is basically conventional DE with one 

important difference. Usually, the candidate is compared to its parent. In Crowding DE, the candidate 

is compared to the most similar individual in the population. The applied similarity measure is the 

Euclidean distance between the two solutions. 

The second, DEMO/closest/dec, works in the same way as DEMO/parent, with the exception that 

the candidate solution is compared to the most similar individual in decision space. If it dominates it, 

the candidate replaces this individual; otherwise it is treated in the same way as in DEMO/parent. The 

applied similarity measure is the Euclidean distance between the two solutions in decision space. In the 

third variant, EMO/closest/obj, the candidate is compared to the most similar individual in objective 

space. DEMO/closest/dec and DEMO/closest/obj need more time for one step of the procedure than 

DEMO/parent. This is because at every step they have to search for the most similar individual in the 

decision and objective space, respectively. 

 

3. Multi-Objective Clustering Scheme 
 
3.1. Search-Variable Representation and Scheme for Finding Correct Number of Clusters 

 

In the proposed method, for n data points, each d-dimensional, and for a user-specified maximum 
number of clusters maxK , a chromosome is a vector of real numbers of dimension dKK  maxmax . The 

first maxK  entries are positive real numbers in (0, 1], each of which controls whether the corresponding 

cluster is to be activated (i.e. to be really used for classifying the data) or not. The remaining entries 
are reserved for maxK  cluster centers, each d-dimensional. For example, the i-th vector is represented 

as: 

GiZ ,


= 

                                                                                            (8) 

 

The j-th cluster center in the i-th chromosome is active or selected for partitioning the associated 
dataset if 5.0, jiT . On the other hand, if 5.0, jiT , the particular j-th cluster is inactive in the i-th vector 

1,iT 2,iT  ..... 

 
max, KiT 1,im


 2,im


...... 

max,Kim
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in DE population. Thus the jiT , s behave like control genes (we call them activation thresholds) in the 

vector governing the selection of the active cluster centers. The rule for selecting the actual number of 

clusters specified by one vector is: 

 
IF 5.0, jiT  THEN the j-th cluster center jim ,

 is ACTIVE ELSE jim ,
  is INACTIVE.            (9)  

 

3.2. Selecting the Objective Functions 

 

The performance of a multi-objective clustering algorithm critically depends upon the clustering 

objectives it tries to optimize simultaneously. Conflict among the objective functions is often 

beneficial since it guides to globally optimal solutions. It also ensures that no single clustering 

objective is optimized leaving other probable significant objectives unnoticed.  

In this work we choose the Xie-Beni index XBq and a penalized version of the FCM function Jq as 

the two objectives. The FCM measure Jq may be defined as: 

),()1( 2

1 1
ij

n

j

k

i

q
ijq mZdukJ


 

 

,  q1                     (10) 

where q is the fuzzy exponent, d indicates a distance measure between the j-th pattern vector and i-th 
cluster centroid, k is the number of active cluster centroids and iju denotes the membership of j-th 

pattern in the i-th cluster. The XB index is defined as a function of the ratio of the total variation   to 

the minimum separation sep of the clusters. Here  and sep may be written as: 

),(
1 1

2
pi

n

p

k

i
ip Zmduσ


  

 

                                     (11) 

and     ),(min)( 2
ji

ji
mmdZsep



                                     (12) 

The XB index is then written as:  

 ),(min

),(

)( 2
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                   (13) 

Note that when the partitioning is compact and the individual clusters are well separated, value of 

 should be low while sep should be high, thereby yielding lower values of XBq index. The objective 

therefore is to minimize the XB index. For computing the measures described in equations (10) and 

(13), the centers encoded in a DE vector are first extracted. Let the set of centers be denoted 
by  kmmm


,...,, 21 .The membership value of the j-th pattern in i-th cluster 

kiuij ,....2,1,  and nj ,....,2,1 are computed as: 
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               (14) 

    Note that while computing the iju s, using equation (12), if ),( jp Zmd


is equal to zero for some p, then 

iju is set to zero for all ki ,....2,1 , ji  , while pju is set equal to one. Subsequently the centers 

encoded in a vector are updated using the following assignment: 
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                           (15) 

and the cluster membership values are recomputed. Note that the XBq index is a combination of global 

(numerator) and particular (denominator) situations. The numerator is similar to Jm but the 

denominator has a factor that gives the separation between to minimum distant clusters. Hence this 

factor only considers the worst case, i.e. which two clusters are closest to each other and forgets about 

the other partitions. Here, greater value of the denominator (lower value of whole index) signifies a 

better partitioning. Thus it is evident that Jq and XBq indices should be simultaneously minimized in 

order to get good solutions. The two terms at the numerator and the denominator of XBq may not attain 

their best values for the same partitioning when the data has complex and overlapping clusters, such as 

remote sensing image and micro-array data. Figure 1 shows, just for the sake of illustration, the final 

Pareto-optimal front (composed of non-dominated solutions) of one of the runs of the MODE 

algorithm for the artificial dataset_3 (described in the next section), to demonstrate the contradictory 

nature of Jq and XB indices.  

 

Figure 1. Non-dominated Pareto front for artificial dataset_3. 
 

 

 

 

 

 

 

 

  

 
 
 
 
 
 
 

Note that except MOCK, all the DE-based algorithms here use the objective functions described in 

(10) and (13). The NSGA-II based algorithm described in [3] use a plain FCM index that incorporates 

no compensation due to large number of clusters. This is obvious, as the method of [3] assumes the 

number of clusters to be known beforehand, whereas, the multi-objective clustering framework 

proposed here makes room for a variable number of clusters and the modified FCM index of (10) 

penalties a large number of clusters. MOCK also uses two conflicting objective functions known as the 
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overall deviation and connectivity. The overall deviation is computed as the overall summed distances 

between data items and their corresponding cluster center: 

),()(  
 


CC Ci

k

k k

miCDev


                                                                           (16) 

where C is the set of all clusters, is the centroid of cluster , and  is the chosen distance function (here, 

the Euclidean distance). As an objective, overall deviation should be minimized. 

Again connectedness evaluates the degree to which neighboring data points have been placed in 

the same cluster. It is computed in the following way: 

 
 











n

i

L

j
nni ij

xCConn
1 1

,)(                                                                           (17) 

where ,1
, jx sr   if there does not exist any kC such that kk CsCr  , 

,0, srx  otherwise. 

ijnn is the j-th nearest neighbor of datum i, n is the size of the clustered data set, and L is a 

parameter determining the number of neighbors that contribute to the connectivity measure. As an 

objective, connectivity should be minimized. 

 

3.3. Avoiding Erroneous Vectors 

 

There is a possibility that in our scheme, during computation of the XB or Jq, a division by zero may 

be encountered. This may occur when one of the selected cluster centers in a DE-vector is outside the 

boundary of distributions of the data set. To avoid this problem we first check to see if any cluster has 

fewer than two data points in it. If so, the cluster center positions of this special chromosome are re-
initialized by an average computation. We put k

n  data points for every individual cluster center, such 

that a data point goes with a center that is nearest to it. 

 

3.4. Selecting the Best Solution from Pareto-Front 

 

Multi-objective clustering does not return a single solution, but a set of clustering solutions. These 

individual groupings correspond to different tradeoffs between the two objectives and, in our case, also 

consist of different numbers of clusters. Several researchers have already investigated the identification 

of promising solutions from Pareto front approximations recently [23, 24]. These works have primarily 

dealt with the reduction of the size of the approximation set in absence of additional expert’s 

knowledge. For choosing the most interesting solutions from the Pareto front, we follow a similar 

technique as the one used in MOCK. It is inspired by Tibshirani et al.’s Gap statistic [25], a statistical 

method to determine the number of clusters in a data set. The Gap statistic is based on the expectation 

that the most suitable number of clusters shows in a significant “knee” when plotting the performance 

of a clustering algorithm (in terms of a selected internal evaluation measure) as a function of the 

number of clusters. We use the same heuristic technique described in pages 65 – 66 of [4] to generate 

the attainment scores for each clustering problem. Finally, we plot the attainment scores as a function 

of the number of clusters. All solutions corresponding to the local optima in the resulting plot are 
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considered as promising solutions. The global maximum in this plot may be considered as the 

estimated “best” solution. 

 

3.5. Evaluating the Clustering Quality  

 

In this work, the final clustering quality is evaluated using two external measures. Specifically we 

choose the adjusted Rand index [26] (which is a generalization of the Rand index [27]) and the 

sihouette index [28]. Mostly we use the adjusted Rand index for evaluating the quality of partitioning 

in those 9 datasets for which the nominal classification is known. Silhouette index is used for the Yeast 

microarray dataset, corresponding to which no standard or nominal classification exists. In most recent 

and existing literatures, like [3, 29], the clustering quality on yeast sporulation data has been judged by 

using this index. 

The adjusted Rand index comes as a generalization of the Rand Index [27]. It introduces a 

statistically induced normalization in order to yield values close to 0 for random partitions. Using a 

representation based on contingency tables, the Adjusted Rand Index is given by: 
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,                                        (18)     

where n is the total number of data points, and nij is the number of data points classified into class i in 
the experimental classification and into class j in the real classification. Also  j iji nn is the number 

of objects classified into cluster i in the experiment, and  i ijj nn is the number of objects 

classified into class j in the actually known classification.  

Silhouette width reflects the compactness and separation of the clusters. Given a set of data points 
},....,{ 1 nZZZ


 and a given clustering solution  kCCCC ,...,, 21 , the Silhouette width )( jZs


for each data 

jZ


belonging to cluster iC indicates a measure of the confidence of belongingness, and it is defined as: 

.
))(),(max(

)()(
)(

jj

jj
j

ZbZa

ZaZb
Zs 


 

                                    (19) 

Here )( jZa


denotes the average distance of data point jZ


from the other data points of the cluster to 

which the data point jZ


is assigned (i. e. cluster iC ). On the other hand, )( jZb


represents the minimum 

of the average distances of data point jZ


from the data points belonging to clusters krCr ,...,2,1   ,  and 

ir  . The value of )( jZs


lies between -1 and +1. Large values of )( jZs


(near to 1) indicate that the data 

point jZ


 is well clustered. Value of )( jZs


 around 0 means that the data point lies between two clusters 

and a negative value of )( jZs


indicates that the data point jZ


is probably placed in a wrong cluster. 

Overall Silhouette index )(Cs of a clustering solution  kCCCC ,...,, 21 is defined as the mean Silhouette 

width over all the data points: 

)(
1

)(
1




n

j
jZs

n
Cs


                                            (20) 
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Greater values of )(Cs (near to 1) reflect that most of the data points are correctly clustered and this 

in turn indicates a better clustering solution. Silhouette index can be evaluated for any distance 

measure. 

 

3.6. Putting It Together 

 
Putting the above procedures together, we may now give an over all pseudo-code of the DE-based 

multi-objective clustering algorithm in the following way: 

 

Pseudo code of clustering with multi-objective DE: 
 

1. Randomly initialize the control genes and cluster centroids for the maximum number   of clusters 

for the initial population. Each control gene corresponds to a cluster centroid. A centroid is said to 

be “active” if the corresponding gene exceeds 0.5.  

2. While stopping criterion not met, do: 

2.1. Evaluate values of Xie-Beni and penalized FCM indices. 

2.2. Create trial vector of control genes and cluster centroids using standard DE operators and 

optimize the indices using multi-objective differential evolution. The control genes and cluster 

centroids are thus evolved. 

3. Find the Pareto front of the final set of solutions and find the best solution using gap statistic. The 

solution at knee point on the Pareto front corresponds to the correct number of clusters. 

 
4. Experimental Results 
 
4.1. Datasets Used 

 

The experimental results showing the effectiveness of multi-objective DE based clustering has been 

provided for six artificial and four real life datasets. The artificial datasets are named as Dataset_1 to 

Dataset_6, with number of clusters varying from 3 to 10. Table 1 presents the number of objects, 

dimensionality and the number of clusters for each data. The real-life datasets are iris, wine, breast-

cancer [30] and the yeast sporulation data. We consider here the microarray data on the transcriptional 

program of sporulation in budding yeast, the collection and analysis of which have been described in 

[16]. The sporulation dataset is publicly available  from the website: http://cmgm.stanford.edu/pbrown/ 

sporulation. This dataset consists of 6,118 genes measured across seven time points (0, 0.5, 2, 5, 7, 9 

and 11.5 h) during the sporulation process of budding yeast. The data are then log-transformed. 

Among the 6,118 genes, those whose expression levels did not change significantly during the 

harvesting, have been ignored from further analysis. This is determined with a threshold level of 1.6 

for the root mean squares of the log2-transformed ratios. The resulting set consists of 474 genes. 

Please note that for the yeast sporulation dataset, we have used the Pearson correlation coefficient 

based distance measure [31], instead of the conventional Euclidean distance (which has been used for 

the rest of the datasets), as it has been shown to be more effective for clustering microarray  

datasets [32]. 
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Table 1. Details of the datasets used. 

Dataset Number of 
points 

Number of 
clusters 

Number of 
Characteristics 

Dataset_1 900 9 2 
Dataset _2 76 3 2 
Dataset _3 400 4 3 
Dataset _4 300 6 2 
Dataset _5 500 10 2 
Dataset_ 6 810 3 2 

Iris 150 3 4 
Wine 178 3 13 

Breast-Cancer 683 2 9 
Yeast Sporulation 474 7 7 

 

4.2. Other Competitor Algorithms 

 

This paper compares the clustering performances of two promising multi-objective DE-variants 

with two other evolutionary multi-objective clustering techniques: the NSGA – II [23] and MOCK 

[24]. Below we briefly describe these techniques, to provide an idea of their conceptual difference with 

the DE-based MO clustering algorithms.  

 

1) The NSGA II based Clustering Algorithm : Bandyopadhyay et al. [3] proposed a non-automatic 

multi-objective scheme for clustering the pixels of remote sensing satellite images into several fuzzy 

partitions. They employed the NSGA II algorithm to optimize a number of fuzzy cluster validity 
indices simultaneously. In NSGA II, initially a random parent population 0G  of size N is created. Then 

the population is sorted based on the non-domination relation. Each solution of the population is 
assigned a fitness that is equal to its non-domination level. A child population 0H is created from the 

parent population 0G  by using binary tournament selection, recombination, and mutation operators. 

Generally according to this algorithm, initially a combined population ttt HGR   is formed of size tR , 

which is 2N. Now all the solutions of tR  are sorted based on their non-domination status. If the total 

number of solutions belonging to the best non-dominated set 1F is smaller than N, 1F is completely 

included into 1tG . The remaining members of the population 1tG  are chosen from subsequent non-

dominated fronts in the order of their ranking. To choose exactly N solutions, the solutions of the last 

included front are sorted using the crowded comparison operator and the best among them (i.e., those 
with larger values of the crowding distance) are selected to fill in the available slots in 1tG . The new 

population 1tG is now used for selection, crossover, and mutation to create a new population 1tH  of 

size N and the process continues. The crowding distance operator is also used in the parent selection 

phase in order to break a tie in the binary tournament selection. This operator is instrumental in 

maintaining diversity in the Pareto front. 

The resultant set of near-Pareto-optimal solutions contained a number of non-dominated solutions, 

which the user could judge relatively and pick up the most promising one according to the problem 

requirements. Real-coded encoding of the cluster centers was used for this purpose. We shall use this 
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algorithm for clustering synthetic as well as real life datasets with real numerical attributes in  

this paper.  

 

2) The MOCK Algorithm : Handl and Knowles proposed a multi-objective clustering scheme known 

as Voronoi Initialized Evolutionary Nearest-Neighbor Algorithm (VIENNA [32]), which is based on 

PESA II [33] and simultaneously optimizes two objectives. It employs a straightforward encoding of a 

clustering, with a gene for each data item and its allele value specifying the cluster to which the data 

item should belong. VIENNA needed an advanced initialization scheme based on Voronoi cells and 

directed mutation to make up for deficiencies in its encoding. In addition, it is non-automatic and does 

not provide any means to select good solutions from the final Pareto front. Handl and Knowles [4, 34] 

proposed an improved EMO-based clustering algorithm, which they named Multi-Objective Clustering 

with Automatic k Determination (MOCK). They fine-tuned one of the objectives used in VIENNA and 

found a better encoding that does not fix the number of clusters and because of good locality and 

heritability, allows a much more effective exploration of the search space via suitable operators. They 

also developed a method for selection of best solutions from the Pareto front based on a null model, 

thus also determining the number of clusters, automatically. MOCK was also extended in [35] for 

improving its scalability to large, high-dimensional datasets and data with large number of clusters. 

Handle and Knowles also introduced MOCK-around-medoids, which allows for the clustering of 

similarity data [36] (as opposed to vectorial data, i.e. points in a metric space). Here we shall use for 

comparison the version of the algorithm described in [4]. 

 

4.3. Parameters for the Algorithms 

 

All the multi-objective DE variants have been used with 40 parameter vectors in each generation 

and each run of each algorithm was continued for 100 generations. The value of scale factor F is a 

random value between 0.5 and 1 and Cr was fixed at 0.9. These parameter values have been 

recommended for DE after performing a series of hand-tuning experiments. First we use standard 

values of F (0.8) and Cr (0.9) [21] and repeat the clustering techniques on various datasets with 

varying population size NP. We find that keeping NP around 40 gives reasonable computational time 

over a wide range of datasets. Next, fixing NP at 40 we varied F and Cr respectively and obtained the 

clustering results on several datasets in terms of the adjusted Rand index. Figure 2 shows a glimpse of 

these experiments with MODE on artificial datasets 5 and 6 for various values of F, keeping Cr at 0.9. 

In each case we report the average adjusted Rand index for 30 independent runs of the algorithms. 

Similarly Figure 3 presents the final accuracy of MODE on the same two datasets for various values of 

Cr keeping the value of F random between 0.5 and 1.5. It is evident from both the figures that the 

suggested parameter setting (F random and Cr = 0.9) gives best clustering performance with the multi-

objective DE variants. We do not provide the results for all the available datasets to save space and 

considering the fact that they show more or less similar trend as shown in Figures 2 and 3.  
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Figure 2.  Final clustering result for artificial datasets 5 and 6 with MODE for different 

settings of scale factor F. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  Final clustering result for artificial datasets 5 and 6 with MODE for different 

settings of crossover rate Cr. 

 

 

 

 

 

 

 

 

 

 

The other parameters for the multi-objective GA (NSGA II) based clustering are fixed as follows: 

number of generations = 100, population size = 50, crossover probability = 0.8, mutation probability 

=
lengthChromosome _

1 . Please note that the two DE variants and the NSGA II use the same parameter 

representation scheme. Clustering with MOCK was performed with the source codes available from 

http://dbkgroup.org/handl/mock/.  

 

4.4. Presentation of Results 

 

The mean adjusted Rand index values of the best-of-run solutions provided by six contestant 

algorithms over the nine datasets (for which the nominal classifications are already known) have been 

provided in Table 2. The best entries have been marked in boldface in each row. Note that for the DE-

based MO clustering techniques, the number of estimated classes correspond to the best solution from 

the Pareto optimal front chosen by using the technique described in Section 3.4. Table 3 shows the 

Silhouette index values for yeast sporulation data as no standard nominal classification is known for 

this dataset. Note that we have not provided the results for other datasets in terms of Silhouette index 
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as analysis based on the Silhouette width is not an objective evaluation technique, as it may be biased 

towards algorithms optimizing objectives related to the Silhouette width.  

Tables 4 and 5 show the results of unpaired t tests (standard error of difference of the two means, 

95% confidence interval of this difference, the t value, and the two-tailed P value) between the best 

and second best algorithms in terms of both average adjusted Rand index and Silhouette index. For all 

cases in Tables 4 and 5, sample size = 30 and number of degrees of freedom = 58. Here all the t-tests 

have been performed using the statistical calculator available from the website: 

http://www.graphpad.com/quickcalcs/ttest1.cfm 

The results listed in Tables 2 to 4 indicate that there is always one or more multi-objective DE 

variant that beats the NSGA II or MOCK in terms of mean Silhouette index and adjusted Rand index 

in a statistically significant fashion. The six unlabelled artificial datasets and the corresponding 

clustered data with the best performing algorithm (which happens to be one of the two multi-objective 

DE variants) have been depicted in Figures 4 to 9. 

 

4.5. Significance and Validation of Microarray Data Clustering Results 

 
In this section the best clustering solution provided by different algorithms on the sporulation data 

of yeast has been visualized using the cluster profile plot (in parallel coordinates) and the heatmap  plot 

in MATLAB 7.0.4 version. Parallel coordinates [37] is a common way of visualizing high-dimensional 

geometry. A point in n-dimensional space is represented as a polyline with vertices on the parallel 

axes; the position of the vertex on the i-th axis corresponds to the i-th coordinate of the point. Cluster 

profile plots (in parallel coordinates) of seven clusters for the best clustering result (provided by 

MODE) on yeast sporulation data has been shown in Figure 10. The blue polylines indicate the 

member genes within a cluster while the black polyline indicates the centroid of that gene. Cluster 

profile plots (Figure 10) also demonstrate how the cluster profiles for the different groups of genes 

differ from each other, while the profiles within a group are reasonably similar. 

In Heatmap (aka Eisen plot) [38] , the expression value of a gene at a specific time point is 

represented by coloring the corresponding cell of the data matrix with a color similar to the original 

color of its spot on the microarray. The shades of red color represent higher expression level, the 

shades of green color represent low expression level and the colors towards black represent absence of 

differential expression values. In our representation, the genes are ordered before plotting so that the 

genes that belong to the same cluster are placed one after another. Figure 11 shows the Heatmap of the 

seven clusters generated by one run of the MODE algorithm for yeast sporulation data. It is evident 

from the figure that the expression profiles of the genes of a cluster are similar to each other and they 

produce similar colour patterns. Genes within the same cluster are expected to exhibit similar 

expressions as they should have similar functionality or contribute to the same biological processes. 

Here we attempt to determine the biological meanings of the clusters by using Gene Ontology (GO) 

terms using the popular web-based tool FatiGO [39] (www.fatigo.org) FatiGO extracts the GO terms 

for a query and a reference set of genes and further computes various statistics for the query set. In our 

experiment, a query is the set of genes of a cluster and union of the genes from the other clusters is 

taken as the reference set. The GO level is fixed at three. It is not possible to evaluate each cluster of 

the final solutions provided by all the algorithms here. So, two interesting clusters from the clustering 
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results obtained on Yeast sporulation data set by the best performing algorithm (MODE in this case) is 

examined. Figure 12 shows a part of the FatiGO results of cluster 2 and 6 of multi-objective clustering 

on the sporulation data. It can be observed that the percentage of genes in the query cluster is 

considerably different from that of the reference cluster in almost all the functionalities. This implies 

that the correct genes are selected to remain in the same cluster. 

 
Table 2. Mean value of adjusted Rand index found and standard deviations (in 

parentheses) by four contestant algorithms over 30 independent runs on nine datasets. 

 
 

Dataset 
 

Algorithms 
MODE DEM O NSGA2 MOCK 

k Adjusted 

Rand Index 

k Adjusted 

Rand Index 

k Adjusted 

Rand Index 

k Adjusted 

Rand Index 

Dataset_1 9.12 
(1.46) 

0.846199 
(0.031257) 

9.43 

(0.843) 

0.828437 

(0.046182) 

9.37 

(1.72) 

0.802180 

(0.004782) 

8.52 

(2.81) 

0.810934 

(0.0059348) 

Dataset_2 3.36 
(0.65) 

0.957621 
(0.006312) 

3.74      

(0.363) 

0.9273464 

(0.0008573) 

3.16 

(0.072) 

0.9378123 

(0.006821) 

3.33 

(1.03) 

0.946547 

(0.004536) 

Dataset_3 4.14 

(0.36) 

0.951786 

(0.004827) 

4.09 
(0.24) 

1.000000 3.57 

(0.51) 

0.963841 

(0.0046719) 

3.78 

(1.25) 

0.878732 

(0.0712523) 

Dataset_4 6.04 
(0.25) 

1.000000 6.13 

(1.27) 
0.857463 

(0.065639) 

6.28 

(0.46) 

0.957818 

(0.004678) 

6.08 

(0.51) 

0.978761 

(0.006734) 

Dataset_5 9.24 

(3.89) 

0.983785 

(0.076764) 

10.03 
(0.37) 

0.993173 
(0.089371)

12.43 

(0.939) 

0.947641 

(0.006646) 

10.41 

(0.80) 

0.9454568 

(0.0012043) 

Dataset_6 5.19 
(0.93) 

0.93456 
(0.08463) 

5.62 

(0.867) 

0.881136 

(0.078348) 

4.65 

(1.58) 

0.881395 

(0.056483) 

5.16 

(0.38) 

0.910294 

(0.016743) 

Iris 3.04 

(0.16) 

0.738626 

(0.0756779) 

2.98 
(0.40) 

0.748784 
(0.067457) 

2.16 

(1.06) 

0.715898 

(0.005739) 

3.05 

(0.37) 

0.736574 

(0.075763) 

Wine 3.16 
(0.46) 

0.875849 
(0.0087642) 

3.65 

(0.83) 

0.858876 

(0.0035287) 

3.88 

(0.67) 

0.828645 

(0.0074653) 

3.59 

(0.46) 

0.864764 

(0.0034398) 

Breast 

Cancer 

2.08 
(0.38) 

0.956456 
(0.0056453) 

2.68 

(0.64) 

0.912173 

(0.0043247) 
2.57 

(0.60) 

0.944236 

(0.006521) 

2.10 

(0.53) 

0.9465731 

(0.006748) 

 
Table 3.  Average Silhouette index and number of clusters found and standard deviations 

(in parentheses) by four contestant algorithms over 30 independent runs on the Yeast 

sporulation dataset. 

 
 

Dataset 
 

Algorithms 
MODE DEMO NSGA2 MOCK 

k Silhouette 
Index 

k Silhouette 
Index 

k Silhouette  
Index 

k Silhouette 
Index 

Yeast 
Sporulati

on 

7.08 
(0.12) 

0.676434 
(0.00072) 

6.34 
(0.32) 

0.558619 
(0.057832) 

7.22 
(0.68) 

0.641306 
(0.04813) 

6.67 
(0.857) 

0.613567 
(0.005738) 
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Table 4. Unpaired t-test Results for adjusted Rand index. 

Dataset Std. Err t 95% Conf. Intvl Two-tailed P Statis tical 
Significance Level 

Dataset_1 0.021 2.9201 -0.1050 to -0.0189 0.0059 Very significant 
Dataset_2 0.013 5.0453 -0.0922 to  -0.0394 < 0.0001 Extremely 

Significant 
Dataset_3 0.002 17.965 -0.0452 to  -0.0360 < 0.0001 Extremely 

Significant 
Dataset_4 0.005 6.4431 -0.0419 to  -0.0219 < 0.0001 Extremely 

Significant 
Dataset_5 0.009 1.3744 -0.0309 to 0.0059 0.1774 Not Significant 
Dataset_6 0.003 2.3999 -0.0118 to  -0.0010 0.0214 Significant 

Iris 0.009 6.3744 -0.0309 to 0.0059 0.1774 Extremely 
Significant 

Wine 0.003 2.3999 -0.0118 to  -0.0010 0.0278 Significant 
Breast Cancer 0.009 1.3744 -0.0309 to 0.0059 0.1774 Not Significant 

 
Table 5. Unpaired t-test results for Silhouette index 

 
Figure 4. Clustering result for artificial dataset_1. 

 

(a) The unlabelled dataset_1                                     (b) Clustering with MODE 

 

 

 

 

 

 

 

 

 

 

 
 

Dataset Std. Err t 95% Conf. Intvl Two-tailed P-
Values 

Statistical 
Significance Level 

Yeast Sporulation 0.003 2.3999 -0.0118 to  -0.0010 0.0214 significant 
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Figure 5. Clustering result for artificial dataset_2. 

(a) The unlabelled dataset_2                                    (b) Clustering with MODE 

 

 

 

 

 

 

 

 

 

 
 

 
Figure 6. Clustering result for artificial dataset_3. 

(a) The unlabelled dataset_3                                   (b) Clustering with DEMO 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7. Clustering result for artificial dataset_4. 

(a) The unlabelled dataset_4                                     (b) Clustering with MODE 
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Figure 8. Clustering result for artificial dataset_5. 

(a) The unlabelled dataset_5                                      (b) Clustering with DEMO 

                                               

 

 

 

 

 

 

 

 
 
 
 

Figure 9. Clustering result for artificial dataset_6. 

(a) The unlabelled dataset_6                                        (b) Clustering with PDE 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 10. Cluster profile plots for clustering solution obtained by MODE-based clustering 

algorithm for yeast sporulation data. 

(a) Cluster 1                           (b) Cluster 2                           (c) Cluster 3  
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Figure 10. Cont. 

(d) Cluster 4                          (e) Cluster 5                           (f) Cluster 6 

 

 

 

 

 

 

 

 

(g) Cluster 8 

 

 

 

          

 
 
 
 
 

Figure 11.  Heatmaps (Eisen plots) for clustering solution obtained by MODE-based 

clustering algorithm for yeast sporulation data. 

(a) Cluster 1                              (b) Cluster 2                             (c) Cluster 3 

 

 

 

 

 

 

 

 

(d) Cluster 4                                 (e) Cluster 5                                     (f) Cluster 6 
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Figure 11. Cont. 

(g) Cluster 7 

 

 

 

 

 

 

 

 

 

 
Figure 12. Part of FatiGO result for (a) cluster 6 and (b) cluster 2 of the best multi-

objective clustering algorithm on yeast sporulation dataset. 
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5. Conclusions 

 

This article compared the performances of two state-of-the-art multi-objective variants of DE with 

two other prominent multi-objective clustering algorithms. The test-suite included six hand-crafted and 

four real-life datasets including the gene expression data of budding yeast. The artificial datasets were 

chosen in two and three dimensions for the ease of visualization of clustering results and the number of 

clusters for them ranged from 3 to 9. The DE-variants and NSGA-II used the same objective functions 

based on the Xie-beni index and the FCM index. Tables 2 to 4 indicate that one or more multi-

objective DE variants were always able to produce better final clustering solutions as compared to 

MOCK or NSGA II in terms of both adjusted Rand index and Silhouette index when all the algorithms 

were let run for an equal number of generations. Not only did they find out the correct partitions in the 

data but also in all cases they were able to determine an optimal number of classes with minimum 

standard deviations. Visualization of the yeast sporulation data clustering results with parallel 

coordinates and heatmap plots indicate that the MODE yielded compact and well separated clusters. 

Biological interpretations to the clustering solution have been given with the help of gene annotation 

using a web-based Gene Ontology tool (FatiGO).  Experimental results indicate that DE holds 

immense promise as a candidate optimization technique for multi-objective clustering. Future research 

may extend the multi-objective DE-based clustering schemes to handle discrete chromosome 

representation schemes that no longer depend on cluster centroids and thus are not biased in any sense 

towards spherical clusters. As a scope of further research, the technique of multi-objective 

optimization with other cluster validity indices needs to be studied. Moreover, new ways of comparing 

the performance of multi-objective solutions have to be defined. The multi-objective clustering 

framework may be utilized for various real life applications, such as offline classification of sensor 

data, automatic image segmentation, document clustering etc. 
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