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Particle Swarm Optimization: Performance 
Tuning and Empirical Analysis  

Millie Pant, Radha Thangaraj, and Ajith Abraham* 

Abstract. This chapter presents some of the recent modified variants of Particle 
Swarm Optimization (PSO). The main focus is on the design and implementation 
of the modified PSO based on diversity, Mutation, Crossover and efficient 
Initialization using different distributions and Low-discrepancy sequences. These 
algorithms are applied to various benchmark problems including unimodal, 
multimodal, noisy functions and real life applications in engineering fields. The 
effectiveness of the algorithms is discussed. 

1   Introduction 

The concept of PSO was first suggested by Kennedy and Eberhart [1]. Since its 
development is 1995, PSO has emerged as one of the most promising optimizing 
technique for solving global optimization problems. Its mechanism is inspired by 
the social and cooperative behavior displayed by various species like birds, fish etc 
including human beings. The PSO system consists of a population (swarm) of 
potential solutions called particles. These particles move through the search domain 
with a specified velocity in search of optimal solution. Each particle maintains a 
memory which helps it in keeping the track of its previous best position. The 
positions of the particles are distinguished as personal best and global best. PSO 
has been applied to solve a variety of optimization problems and its performance is 
compared with other popular stochastic search techniques like Genetic algorithms, 
Differential Evolution, Simulated Annealing etc. [2], [3], [4]. Although PSO has 
shown a very good performance in solving many test as well as real life 
optimization problems, it suffers from the problem of premature convergence like 
most of the stochastic search techniques, particularly in case of multimodal 
optimization problems. The curse of premature convergence greatly affects the 
performance of algorithm and many times lead to a sub optimal solution [5]. 
Aiming at this shortcoming of PSO algorithms, many variations have been 
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developed to improve its performance. Some of the interesting modifications that 
helped in improving the performance of PSO include introduction of inertia weight 
and its adjustment for better control of exploration and exploitation capacities of 
the swarm [6] [7], introduction of constriction factor to control the magnitudes of 
velocities [8], impacts of various neighborhood topologies on the swarm [9], 
extension of PSO via genetic programming [10], use of various mutation operators 
into PSO [11] – [13]. In the present study ten recent versions of PSO are 
considered. Out of the ten chosen versions, five versions are based on the efficient 
initialization of swam, three versions are diversity guided and the remaining 
versions makes use of cross-over operator to improve the performance of PSO.   

The present article has seven sections including the introduction. In the next 
section, a brief description of the basic PSO is given. Section 3 is divided into 
three subsections; in 3.1, PSO versions with different initialization schemes are 
described; in section 3.2 three diversity guided PSO are given and in Section 3.3 
PSO with crossover operator is described. Section 4 is devoted to numerical 
problems consisting of ten popular bench mark problems and two real life 
problems. In Section 5 and Section 6, describe the experimental settings and 
numerical results respectively. The chapter finally concludes with Section 7. 

2   Particle Swarm Optimization  

The working of the Basic Particle Swarm Optimization (BPSO) may be described 
as: For a D-dimensional search space the position of the ith particle is represented 
as Xi = (xi1, xi2, … xiD). Each particle maintains a memory of its previous best 
position Pbesti = (pi1, pi2… piD). The best one among all the particles in the 
population is represented as Pgbest = (pg1, pg2… pgD). The velocity of each particle 
is represented as Vi = (vi1, vi2, … viD). In each iteration, the P vector of the particle 
with best fitness in the local neighborhood, designated g, and the P vector of the 
current particle are combined to adjust the velocity along each dimension and a 
new position of the particle is determined using that velocity. The two basic 
equations which govern the working of PSO are that of velocity vector and 
position vector given by: 

                                        )()( 2211 idgdidididid xprcxprcwvv −+−+=               (1)     

                                                ididid vxx +=                                                                   (2)       

The first part of equation (1) represents the inertia of the previous velocity, the 
second part is the cognition part and it tells us about the personal experience of the 
particle, the third part represents the cooperation among particles and is therefore 
named as the social component. Acceleration constants c1, c2 and inertia weight w 
are the predefined by the user and r1, r2 are the uniformly generated random 
numbers in the range of [0, 1]. 

3   Modified Version of Particle Swarm Optimization  

Empirical studies have shown that the basic PSO has a tendency of premature 
convergence [518], [559], [602], [606], [649] and the main reason  for this 
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behavior is due to the loss of diversity in successive iterations. It has been 
observed that the presence of a suitable operator may help in improving the 
performance of PSO quite significantly. This chapter concentrates on two things; 
first is on the efficient generation of population using different initialization 
schemes and second is the use of diversity to guide the swarm using different 
operations like repulsion, mutation and crossover. 

3.1   Efficient Initialization Particle Swarm Optimization  

PSO (and other search techniques, which depend on the generation of random 
numbers) works very well for problems having a small search area (i.e. a search 
area having low dimension), but as the dimension of search space is increased, the 
performance deteriorates and many times converge prematurely giving a 
suboptimal result [5]. This problem becomes more persistent in case of multimodal 
functions having several local and global optima. One of the reasons for the poor 
performance of a PSO may be attributed to the dispersion of initial population 
points in the search space i.e. to say, if the swarm population does not cover the 
search area efficiently, it may not be able to locate the potent solution points, 
thereby missing the global optimum [14]. This difficulty may be minimized to a 
great extent by selecting a well-organized distribution of random numbers.   

This section analyzes the behavior of some simple variations of PSO where 
only the initial distribution of random numbers is changed. Initially in the 
algorithms the initial uniform distribution is replaced by other probability 
distributions like exponential, lognormal and Gaussian distributions. It is 
interesting to see that even a small change in the initial distribution produces a 
visible change in the numerical results. After that more specialized algorithms are 
designed which use low discrepancy sequences for the generation of random 
numbers. A brief description of the algorithms is given in the subsequent sections. 

The most common practice of generating random numbers is the one using an 
inbuilt subroutine (available in most of the programming languages), which uses a 
uniform probability distribution to generate random numbers. It has been shown 
that uniformly distributed particles may not always be good for empirical studies 
of different algorithms. The uniform distribution sometimes gives a wrong 
impression of the relative performance of algorithms as shown by Gehlhaar and 
Fogel [15].  

3.1.1   Initializing the Swarm Using Different Probability Distributions [16]   

Different Probability Distributions like Exponential and Gaussian have already 
been used for the fine tuning of PSO parameters [17], [18]. But for initializing the 
swarm most of the approaches use uniformly distributed random numbers. Pant et 
al. [16] investigated the possibility of having a different probability distribution 
(Gaussian, Exponential, Lognormal) for the generation of random number other 
than the uniform distribution. Empirical results showed that distributions other 
than uniform distribution are equally competent and in most of the cases are better 
than uniform distribution. The algorithms GPSO, EPSO and LNPSO use 
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Gaussian, exponential and lognormal distributions respectively. The algorithms 
follow the steps of BPSO given in Section 2 except for the fact that they use 
mentioned distributions in place of uniform distributions. 

3.1.2   Initializing the Swarm Using Low-Discrepancy Sequences [19]  

Theoretically, it has been proved that low discrepancy sequences are much better 
than the pseudo random sequences because they are able to cover the search space 
more evenly in comparison to pseudo random sequences (please see Figures 1(a) 
and 1(b)). Some previous instances where low discrepancy sequences have been 
used to improve the performance of optimization algorithms include [20] – [24]. 
In [22] – [24] authors have made use of Sobol and Faure sequences. Similarly, 
Nguyen et al. [21] have shown a detailed comparison of Halton Faure and Sobol 
sequences for initializing the swarm.  In the previous studies, it has already been 
shown that the performance of Sobol sequence dominates the performance of 
Halton and Faure sequences. The performance of PSO using Van der Corput 
sequence called VCPSO along with PSO with Sobol sequence called SOPSO 
(which is said be superior than other low discrepancy sequences according to the 
previous studies) for swarm initialization is scrutinized and tested them for solving 
global optimization problems in large dimension search spaces by Pant et al. [19]. 

 

 
                           (a)     (b) 

Fig. 1(a) Sample points generated using a pseudo random sequence. 1(b) Sample points 
generated using a quasi random sequence 

Brief description of the sequences used in VCPSO and SOPSO: 

Van der Corput Sequence 
A Van der Corput sequence is a low-discrepancy sequence over the unit interval 
first published in 1935 by the Dutch mathematician J. G. Van der Corput. It is a 
digital (0, 1)-sequence, which exists for all bases b ≥ 2. It is defined by the radical 
inverse function φb : N0→[0, 1). If n ∈ N0 has the b-adic expansion  



Particle Swarm Optimization: Performance Tuning and Empirical Analysis 105
 

  ∑
=

−=
T

j

j
jban

0

1                                                  (3) 

with aj ∈ {0,…, b – 1}, and ⎣ ⎦nT blog=  then φb is defined as  

                    ∑
=

=
T

j
j

j
b

b

a
n

0
)(ϕ                                                     (4) 

In other words, the jth b-adic digit of n becomes the jth b-adic digit of φb(n) 
behind the decimal point. The Van der Corput sequence in base b is then defined 
as (φb(n))n ≥ 0. 

The elements of the Van der Corput sequence (in any base) form a dense set in 
the unit interval: for any real number in [0, 1] there exists a sub sequence of the 
Van der Corput sequence that converges towards that number. They are also 
uniformly distributed over the unit interval. 

Sobol Sequence  
The construction of the Sobol sequence [25] uses linear recurrence relations over 
the finite field, F2, where F2 = {0, 1}. Let the binary expansion of the non-

negative integer n be given by 11
2

0
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where )( j
iv is a binary fraction called the ith direction number in the jth dimension. 

These direction numbers are generated by the following q-term recurrence 
relation: 
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comes from the coefficients of a degree-q primitive polynomial over F2.  

VC-PSO and SO-PSO Algorithm  
It has been shown that uniformly distributed particles may not always be good for 
empirical studies of different algorithms. The uniform distribution sometimes 
gives a wrong impression of the relative performance of algorithms as shown by 
Gehlhaar and Fogel [15].  

The quasi random sequences on the other hand generates a different set of 
random numbers in each iteration, thus providing a better diversified population of 
solutions and thereby increasing the probability of getting a better solution. 

Keeping this fact in mind we decided to use the Vander Corput sequence and 
Sobol sequence for generating the swarm. The swarm population follows equation 
(1) and (2) for updating the velocity and position of the swarm. However for the 
generation of the initial swarm Van der Corput Sequence and Sobol Sequences 
have been used for VC-PSO and SO-PSO respectively. 
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3.2   Diversity Guided Particle Swarm Optimization  

Diversity may be defined as the dispersion of potential candidate solutions in the 
search space. Interested readers may please refer to [26] for different formulae 
used for calculating diversity. One of the drawbacks of most of the population 
based search techniques is that they work on the principle of contracting the 
search domain towards the global optima. Due to this reason after a certain 
number of iterations all the points get accumulated to a region which may not even 
be a region of local optima, thereby giving suboptimal solutions [5]. Thus without 
a suitable diversity enhancing mechanism it is very difficult for an optimization 
algorithm to reach towards the true solution. The problem of premature 
convergence becomes more persistent in case of highly multimodal functions like 
Rastringin and Griewank having several local minima. This section presents three 
algorithms Attraction Repulsion PSO (ATREPSO), Gaussian Mutation PSO 
(GMPSO) and Quadratic Interpolation PSO (QIPSO) which use different diversity 
enhancing mechanisms to improve the performance of the swarm. All the 
algorithms described in the given sub sections use diversity threshold values dlow 

and dhigh to guide the movement of the swarm. The threshold values are predefined 
by the user. In ATREPSO, the swarm particles follow the mechanism of repulsion 
so that instead of converging towards a particular location the particles are 
diverged from that location. In case of GMPSO and QIPSO evolutionary operators 
like mutation and crossover are induced in the swarm to perturb the population. 
These algorithms are described in the following subsections. 

3.2.1   Attraction Repulsion Particle Swarm Optimization Algorithm [27]  

The Attraction Repulsion Particle Swarm Optimization Algorithm (ATREPSO) of 
Pant et al. [27] is a simple extension of the Attractive and Repulsive PSO 
(ARPSO) proposed by Vesterstorm [28], where a third phase called in between 
phase or the phase of positive conflict is added In ATREPSO, the swarm particles 
switches alternately between the three phases of attraction, repulsion and an ‘in 
between’ phase which consists of a combination of attraction and repulsion. The 
three phases are defined as: 

Attraction phase (when the particles are attracted towards the global optimal) 

                                 )()( 2211 idgdidididid xprcxprcwvv −+−+=             (5) 

Repulsion phase (particles are repelled from the optimal position) 

                               )()( 2211 idgdidididid xprcxprcwvv −−−−=   (6) 

In-between phase (neither total attraction nor total repulsion) 

                          )()( 2211 idgdidididid xprcxprcwvv −−−+=   (7) 

In the in-between phase, the individual particle is attracted by its own previous 
best position pid and is repelled by the best known particle position pgd. In this way 
there is neither total attraction nor total repulsion but a balance between the two. 
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The swarm particles are guided by the following rule 
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3.2.2   Gaussian Mutation Particle Swarm Optimization Algorithm [29]  

The concept of mutation is quite common to Evolutionary Programming and 
Genetic Algorithms. The idea behind mutation is to increase of diversity of the 
population. There are several instances in PSO also where mutation is introduced 
in the swarm. Some mutation operators that have been applied to PSO include 
Gaussian [244], Cauchy [655], [656], Nonlinear [589], Linear [589] etc. The 
Gaussian Mutation Particle Swarm Optimization (GMPSO) algorithm given in 
this section is different from the above mentioned algorithms as it uses the 
threshold values to decide the activation of mutation operator. The concept is 
similar to that of ATREPSO i.e. to use diversity to decide the movement of the 
swarm. The algorithm uses the general equations (1) and (2) for updating the 
velocity and position vectors. At the same time a track of diversity is also kept 
which starts decreasing slowly and gradually after a few iterations because of the 
fast information flow between the swam particles leading to clustering of particles. 
It is at this stage that the Gaussian mutation operator given as Xt+1[i] = Xt[i] + η* 
Rand(), where Rand is a random number generated by Gaussian distribution, is 
activated with the hope to increase the diversity of the swarm population. Here η 
is a scaling parameter. 

3.2.3   Quadratic Interpolation Particle Swarm Optimization Algorithm [30]  

As mentioned in the previous section, there are several instances available in 
literature on the use of mutation operator however there are not much references on 
the use of reproduction operator. One of the earlier references on the use of 
reproduction operator can be found in Clerc [101]. The Quadratic Interpolation 
Particle Swarm Optimization (QIPSO) algorithm described in this chapter uses 
concept of reproduction. It uses diversity as a measure to guide the swarm. When 
the diversity becomes less than dlow, then the quadratic crossover operator is 
activated to generate a new potential candidate solution. The process is repeated 
iteratively till the diversity reaches the specified threshold dhigh.  The quadratic 
crossover operator used in this paper is a nonlinear crossover operator which makes 
use of three particles of the swarm to produce a particle which lies at the point of 
minima of the quadratic curve passing through the three selected particles.  

It uses a = Xmin, (best particle with minimum function value) and two other 
randomly selected particles {b, c} (a, b and c are different particles) from the 

swarm to determine the coordinates of the new particle )~,.......,~,~(~ 21 ni xxxx = , where  
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The nonlinear nature of the quadratic crossover operator used in this work helps in 
finding a better solution in the search space.  

3.3   Crossover Based Particle Swarm Optimization  

In this section two more modifications applied to the QIPSO given in Section 3.2 
are described. 

3.3.1   QIPSO-1 [31] and QIPSO-2 [32] Algorithms  

The basic idea of QIPSO-1 and QIPSO-2 are modified versions of QIPSO 
algorithm given in section 3.2, which differ from each other in selection criterion 
of the individual. In QIPSO-1, the new point generated by the quadratic 
interpolation given by equation (9) is accepted in the swarm only if it is better than 
the worst particle of the swarm, where as in QIPSO-2, the particle is accepted if it 
is better than the global best particle. 

4   Numerical Problems 

One of the shortcomings of population based search techniques is that there are 
not many concrete proofs available to establish their authority for solving a wide 
range of problems. Therefore the researchers often depend on empirical studies to 
scrutinize the behavior of an algorithm. The numerical problems may be divided 
into two classes; benchmark problems and real life problems. For the present 
article ten standard benchmark functions and two real life problems described in 
the following subsections are taken.  

4.1   Benchmark Problems  

A collection of ten benchmark problems given in Table 1 is taken for the present 
study to analyze the behavior of algorithms taken in this study. These problems may 
not be called exhaustive but they provide a good launch pad for testing the 
credibility of an optimization algorithm. The first eight problems are scalable i.e. the 
problems can be tested for any number of variables. However for the present study 
medium sized problems of dimension 20 are taken. The three dimensional graphs of 
the test functions are depicted in Figures 2(a) to (i).  

The special properties of the benchmark functions taken in this study may be 
described as: 

 The first function f1, commonly known as Rastringin function, is a highly 
multimodal function where the degree of multimodality increases with 
the increase in the dimension of the problem.  

 The second function f2, also known as spherical function is a continuous, 
strictly convex and unimodal function and usually do not pose much 
difficulty for an optimization algorithm.  
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 Griewank function is the third function. It is highly multimodal function 
having several local minima.  

 The search space of the fourth function is dominated by a large gradual 
slope. Despite the apparent simplicity of the problem it is considered 
difficult for search algorithms because of its extremely large search space 
combined with relatively small global optima.  

 f5 is a noisy function where a uniformly distributed random noise is 
added to the objective function. Due to the presence of noise the 
objective function keeps changing from time to time and it becomes a 
challenge for an optimization algorithm to locate the optimum.  

 Functions f6 to f8 are again multimodal functions having several optima. 
Such functions provide a suitable platform for testing the credibility of an 
optimization algorithm. 

 Function f9 and f10 are two dimensional functions. Function f10 is 
although simple in appearance but it an interesting and challenging 
function having 786 local minima and 18 global minima. 

Table 1 Numerical Benchmark Problems [3] 
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 (a) Function f1             (b) Function f2 
 

 
 (c) Function f3    (d) Function f4 

 

 
 (e) Function f6               (f) Function f7 

 

Fig. 2 Three Dimensional graphs of benchmark problems 
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 (g) Function f8    (h) Function f9 
 

 
 (i) Function f10 

Fig. 2 (continued) 

4.2   Real Life Problems  

Two real life engineering design problems are considered to depict the 
effectiveness of the algorithms discussed in the present article. These are nonlinear 
problems and both the problems are common in the field of electrical engineering. 
Mathematical model of the problems are given as: 

4.2.1   Design of a Gear Train [33]  

The first problem is to optimize the gear ratio for the compound gear train. This 
problem shown in Figure 3 was introduced by Sandgren [34]. It is to be designed 
such that the gear ratio is as close as possible to 1/6.931. For each gear the number 
of teeth must be between 12 and 60. Since the number of teeth is to be an integer, 
the variables must be integers. The mathematical model of gear train design is 
given by, 

Min    
2

43

21

2

931.6

1

931.6

1

⎭
⎬
⎫

⎩
⎨
⎧

−=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−=
xx

xx

TT

TT
f

fa

bd  



112 M. Pant et al.
 

Subject to: 6012 ≤≤ ix  4,3,2,1=i  

],,,[],,,[ 4321 fabd TTTTxxxx = , xi’s should be integers. Ta, Tb, Td, and Tf are the 

number of teeth on gears A, B, D and F respectively. 

Fig. 3 Compound Gear Train 

 

 

4.2.2   Transistor Modeling [35]  

The second problem is a transistor modeling problem. The mathematical model of 
the transistor design is given by, 
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This objective function provides a least-sum-of-squares approach to the solution 
of a set of nine simultaneous nonlinear equations, which arise in the context of 
transistor modeling. 

5   Experimental Settings 

Like all Evolutionary Algorithms, PSO has a set of parameters which is to be 
defined by the user. These parameters are population size, inertia weight, 
acceleration constants etc. these parameters may be varied as per the complexity 
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of the problem. For example the population size in PSO related literature has been 
suggested as 2n to 5n, where n is the number of decision variables or a fixed 
population size. In the present study a fixed population size of thirty is taken for 
all the problems, which gave reasonably good results. Similarly various examples 
are available on the variations done in inertia weight and acceleration constants. 
For the present study, which consist of small moderate size problems of dimension 
2 and 20, the list parameters which gave sufficiently good results is summarized 
below. 

 
Common Parameters: 
Population Size (NP):  Number of variables 30 
Inertia weight:   Linearly decreasing (0.9 – 0.4) 
Acceleration Constants:  c1 = c2 = 2.0 
Stopping Criterion:  Maximum number of generations = 10000 
 
Probability Distributions for initializing the swarm: 
Gaussian distribution: 
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Exponential distribution: 
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Log-normal distribution: 
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Threshold values: dhigh = 0.25, dlow = 5.0*10-6 
 
Repair method for points violating the boundary conditions 
 
Hardware Settings 
All algorithms are executed on a P-IV PC. Programming language used is DEV 
C++ 
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Table 2 Comparison results of PSO, GPSO, EPSO, and LNPSO (Mean/diversity/standard 
deviation) 

Function PSO GPSO EPSO LNPSO 

1f  22.339158 
0.000115 
15.932042 

9.750543 
0.364310 
5.433786 

12.173973 
5.380822e-05 
9.274301 

23.507127 
0.264117 
15.304573 

2f  1.167749e-45 
2.426825e-23 
5.222331e-46 

1.114459e-45 
3.168112e-23 
4.763499e-46 

1.167749e-45 
3.909771e-23 
5.222331e-46 

1.114459e-45 
2.778935e-23 
4.763499e-46 

3f  0.031646 
0.000710 
0.025322 

0.004748 
1.631303e-08 
0.012666 

0.011611 
0.001509 
0.019728 

0.011009 
0.000877 
0.019186 

4f  22.191725 
2.551408 
1.615544e+04 

9.992837 
2.527997 
3.168912 

8.995165 
1.8737 
3.959364 

4.405738 
2.904427 
4.121244 

5f  8.681602 
0.340871 
9.001534 

0.636016 
0.210458 
0.296579 

0.380297 
0.237913 
0.281234 

0.537461 
0.254176 
0.285361 

6f  -6178.559896 
0.072325 
489.3329 

-6354.119792 
0.059937 
483.654032 

-6306.353646 
0.026106 
575.876696 

-6341.4000 
0.034486 
568.655436 

7f  3.483903e-18 
3.651635e-18 
8.359535e-19 

3.136958e-18 
5.736429e-13 
8.596173e-19 

3.368255e-18 
3.903653e-18 
8.596173e-19 

3.368255e-18 
3.846865e-18 
8.596173e-19 

8f  -18.1594 
1.17699 
1.05105 

-18.5162 
0.603652 
0.907089 

-18.675 
2.63785 
1.06468 

-18.3944 
0.221685 
1.02706 

9f  -3.331488 
2.747822e-05 
1.24329 

-3.63828 
1.71916e-009 
0.346782 

-3.63828 
1.65462e-009 
0.346782 

-3.49261 
1.4056e-009 
0.445052 

10f  -186.730941 
0.362224 
1.424154e-05 

-186.731 
1.0056 
3.3629e-014 

-186.731 
0.19356 
3.11344e-014 

-186.731 
0.82143 
2.00972e-014 

6   Numerical Results 

A comparative analysis of the algorithms described is given Tables 2 to 9. Each 
algorithm was executed 100 times and the average fitness function value, diversity 
and standard deviation are reported. Tables 2 to 5 give the numerical results for 
benchmark problems whereas, the numerical results of real life problems are given 
in Tables 6 to 9. 

Table 2, gives the numerical results of PSO versions initialized with Gaussian, 
exponential and lognormal probability distributions. From the numerical results  
it can be seen that the PSO using Gaussian mutation, GPSO, gave the best 
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Table 3 Comparison results of PSO, VC-PSO and SO-PSO (Mean/diversity/standard 
deviation) 

Fun 
ction 

PSO VC-PSO SO-PSO Fun 
ction

PSO VC-PSO SO-PSO 

1f  22.3391 
0.00011 
15.9320 

9.99929 
1.00441 
4.08386 

8.95459 
0.319194 
2.65114 

6f  -6178.559 
0.072325 
4.893e+02 

-6503.05 
3.469e-06
477.252 

-6252.51 
2.478e-06 
472.683 

2f  1.16e-45 
2.42e-23 
5.22e-46 

1.17e-108 
7.15e-054 
4.36e-108 

1.51e-108 
6.36e-055 
4.46e-108 

7f  3.483e-18 
3.651e-18 
8.359e-19 

5.473e-19
5.039e-19
1.776e-18

4.585e-19 
6.506e-17 
1.538e-18 

3f  0.03164 
0.00071 
0.02532 

0.00147 
1.233e-08 
0.00469 

0.001847 
9.940e-09 
0.004855 

8f  -18.1594 
1.17699 
1.05105 

-18.2979 
0.0306 
0.8902 

-18.70665 
0.0316574 
1.028749 

4f  22.1917 
2.55140 
1.61e+04 

6.30326 
2.01591 
3.99428 

6.81079 
2.61624 
3.76973 

9f  -3.331488 
2.747e-05 
1.24329 

-3.58972 
1.439e-09
0.388473

-3.78396 
3.946e-09 
1.47699 

5f  8.68160 
0.34087 
9.00153 

0.410042 
0.230096 
0.294763 

0.806175 
0.191133 
0.868211 

10f -186.730 
0.36222 
1.424e-05 

-186.731 
1.10502 
2.770e-14

-186.731 
0.32435 
3.595e-14 

performance in comparison to other versions, followed by EPSO and LNPSO. For 
the first function, f1, GPSO gave the best function value of approximately 10.00 
which is much better than the values obtained by the other algorithms. For f2, 
which is a simple spherical function all the algorithms gave more or less similar 
results. However GPSO and LNPSO gave a slightly better performance. For f3, 
once again the average fitness function value obtained by GMPSO is much better 
than the average fitness function value obtained by EPSO and LNPSO. For f6 and 
f7 once again GMPSO outperformed the other algorithms given in Table 2. For f9, 
both GMPSO and EPSO gave same result, which is better than the other two 
algorithms. Whereas for f10, GMPSO, EPSO and LNPSO gave same result which 
is marginally better than the result obtained by basic PSO. In all, out of the 10 test 
functions GPSO outperformed others in 7 test cases. EPSO gave better results in 4 
cases and LNPSO performed better in 3 cases. In all the cases the results were 
better than Basic PSO using uniform distribution.  

Table 3, gives the comparison of PSO versions initialized with low discrepancy 
sequences with the basic PSO. It can be observed that PSO initialized with Sobol 
sequence (SOPSO) gave slightly better results than PSO initialized with Van der 
corput sequence. But a notable thing is that although SOPSO outperformed 
VCPSO in most of the test cases, the percentage of improvement is only marginal. 
Whereas, if we compare these results with basic PSO then the quality of solutions 
obtained by SOPSO and VCPSO is significantly better than the solutions obtained 
by basic PSO. For example, in f1, which is a highly multimodal function the 
optimum function value obtained by VCPSO and SOPSO is approximately 10.00 
and 9.00 respectively where as the optimum function value obtained by basic PSO 
is approximately 22.00. Likewise, there is a significant improvement in the 
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Table 4 Comparison results of PSO, QIPSO, ATREPSO and GMPSO (Mean/diversity/ 
standard deviation) 

Function PSO QIPSO ATREPSO GMPSO 

1f  22.339158 
0.000115 
15.932042 

11.946888 
0.015744 
9.161526 

19.425979 
7.353246 
14.349046 

20.079185 
7.143211e-05 
13.700202 

2f  1.167749e-45 
2.426825e-23 
5.222331e-46 

0.000000 
0.000000 
0.000000 

4.000289 e-17 
8.51205 
0.000246 

7.263579e-17 
0.00026 
6.188854e-17 

3f  0.031646 
0.000710 
0.025322 

0.01158 
3.391647e-05 
0.01285 

0.025158 
0.000563 
0.02814 

0.024462 
0.000843 
0.039304 

4f  22.191725 
2.551408 
1.615544e+04 

8.939011 
1.983866 
3.106359 

19.49082 
1.586547 
3.964335e+04 

14.159547 
6.099418e-05 
4.335439e+04 

5f  8.681602 
0.340871 
9.001534 

0.451109 
0.0509 
0.328623 

8.046617 
2.809409 
8.862385 

7.160675 
0.29157 
7.665802 

6f  -6178.559896 
0.072325 
489.3329 

-6355.58664 
0.00881 
477.532584 

-6183.6776 
199.95052 
469.611104 

-6047.670898 
0.062176 
482.926738 

7f  3.483903e-18 
3.651635e-18 
8.359535e-19 

2.461811e-24 
0.000127 
0.014425 

0.018493 
42.596802 
0.014747 

1.474933e-18 
0.061308 
1.153709e-08 

8f  -18.1594 
1.17699 
1.05105 

-18.4696 
1.2345 
0.092966 

-18.9829 
0.39057 
0.272579 

-18.3998 
1.63242 
0.403722 

9f  -3.331488 
2.747822e-05 
1.24329 

-3.783961 
0.637823 
0.190394 

-3.751458 
3.214462 
0.174460 

-3.460233 
9.066805e-06 
0.45782 

10f  -186.730941 
0.362224 
1.424154e-05 

-186.730942 
2.169003 
3.480934e-14 

-186.730941 
5.410105 
1.424154e-05 

-186.730942 
0.239789 
1.525879e-05 

function value for functions f4 and f5. For f4, VCPSO and SOPSO gave function 
values as 6.00 and 7.00 approximately and basic PSO gave an average fitness 
function value of 22.00. In f5, VCPSO and SOPSO converged to 0.4 and 0.8 
respectively while basic PSO converged to an optimum function value of 8.00. 

In Table 4, the results of diversity guided PSO algorithms are given. From the 
numerical results it is evident that the PSO assisted with quadratic crossover 
operator, QIPSO is a clear winner. QIPSO gave significantly better performance 
than ATREPSO, GMPSO and basic PSO in 9 out of 10 test cases taken for the 
present study. Second place goes to ATREPSO and third to GMPSO.  

Table 5, gives the comparison of modified versions of QIPSO with basic PSO. 
If a comparison is done between QIPSO1 and QIPSO2, than from the numerical 
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Table 5 Comparison results of PSO, QIPSO-1 and QIPSO-2 (Mean best fitness) 

BPSO QIPSO-1 QIPSO-2 Fun- 
ction Mean Best Fitness Mean Best Fitness Mean Best Fitness 
f1 22.339158 0.994954 5.97167e-01 
f2 1.167749e-45 2.523604e-45 8.517991e-43 

f3 0.031646 0.015979 2.940000e-02 
f4 22.191725 77.916591 51.0779 
f5 8.681602 0.454374 4.540630e-01 
f6 -6178.559896 -9185.074692 -9.185054e+03 

f7 3.483903e-18 5.89622e-10 6.300262e-09 

f8 -18.1594 -27.546 -27.546 

f9 -3.331488 -3.58972 -3.78396 
f10 -186.730941 -186.731 -186.731 

results it can be seen that QIPSO-2, in which the new particle is accepted in the 
swarm only if it is better than the global best particle is better than QIPSO-1 in 
terms of average fitness function value. However once again it can be observed 
that the improvement of QISPO-2 over QIPSO-1 is only marginal whereas both 
the algorithms performed much better than the basic PSO. Empirical results are 
graphically illustrated in Figures 4-7. 

     
                          (a)   Function f1                                  (b)   Function f2    

  

                           (c)   Function f3                                             (d)   Function f4 

Fig. 4 Performance for BPSO, GPSO, EPSO and LNPSO 
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              (e) Function f5                                                          (f) Function f6                                                        
 

   
                      (g) Function f7                                                       (h) Function f8 
  

    
                      (i) Function f9                                                       (j) Function f10    

Fig. 4 (continued) 

    
                 (a) Function f1                                      (b) Function f2       

Fig. 5 Performance curves for BPSO, VC-PSO and SO-PSO 
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                     (c) Function f3        (d) Function f4 
 

     
                  (e) Function f5      (f) Function f6 
 

     
                  (g) Function f7       (h) Function f8 
 

     
                  (i) Function f9    (j) Function f10 

Fig. 5 (continued) 
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                (a) Function f1    (b) Function f2   
 

   
                        (c) Function f3                (d) Function f4 

   

                 (e)  Function f5   (f)  Function f6 
 

 
                    (g)  Function f7      (h)  Function f8 
 

Fig. 6 Performance curves for BPSO, QIPSO, ATREPSO and GMPSO 
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                    (i)  Function f9            (j)  Function f10 

Fig. 6 (continued) 

  
                  (a) Function f1    (b) Function f2 
 

     
                        (c) Function f3          (d) Function f4 
 

 
                       (e) Function f5         (f) Function f6 

Fig. 7 Performance curves for BPSO, QIPSO-1and QIPSO-2 



122 M. Pant et al.
 

 
                    (g) Function f7    (h) Function f8 
 

 
                      (i) Function f9                    (j) Function f10 

Fig. 7 (continued) 

Table 6 Comparison results of real life problems (BPSO, GPSO, EPSO and LNPSO) 

Gear Train Design 
Item BPSO GPSO EPSO LNPSO 
x1 13 20 20 20 
x2 31 13 13 13 
x3 57 53 53 53 
x4 49 34 34 34 

f (x) 9.989333e-11 2.331679e-11 2.331679e-11 2.33168e-011 
Gear Ratio 0.14429 0.14428 0.14428 0.14428 
Error (%) 0.007398 0.000467 0.000467 0.000467 

Transistor Modeling 
Item BPSO GPSO EPSO LNPSO 
x1 0.901019 0.901241 0.901279 0.90097 
x2 0.88419 0.883919 0.888237 0.880522 
x3 4.038604 3.756517 3.854668 3.94582 
x4 4.148831 3.861717 3.986954 4.081 
x5 5.243638 5.387461 5.338548 5.28292 
x6 9.932639 10.551659 10.410919 9.95503 
x7 0.100944 0.26037 0.091619 0.221577 
x8 1.05991 1.077294 1.083181 1.05418 
x9 0.80668 0.764622 0.752615 0.825799 
f(x) 0.069569 0.058406 0.05974 0.06292 



Particle Swarm Optimization: Performance Tuning and Empirical Analysis 123
 

Table 7 Comparison results of real life problems (BPSO, VC-PSO and SO-PSO) 

Gear Train Design 
Item BPSO VC-PSO SO-PSO 
x1 13 16 16 
x2 31 19 19 
x3 57 49 49 
x4 49 43 43 
f (x) 9.989333e-11 2.782895e-12 2.7829e-012 
Gear Ratio 0.14429 0.14428 0.14428 
Error (%) 0.007398 0.000467 0.000467 

Transistor Modeling 
Item BPSO VC-PSO SO-PSO 
x1 0.901019 0.900433 0.901031 
x2 0.88419 0.52244 0.885679 
x3 4.038604 1.07644 4.05936 
x4 4.148831 1.949464 4.17284 
x5 5.243638 7.853698 5.23002 
x6 9.932639 8.836444 9.88428 
x7 0.100944 4.771224 0.025906 
x8 1.05991 1.007446 1.06251 
x9 0.80668 1.854541 0.802467 
f(x) 0.069569 0.011314 0.067349 

Table 8 Comparison results of real life problems (BPSO, QIPSO, ATREPSO and GMPSO) 

Gear Train Design 
Item BPSO QIPSO ATREPSO GMPSO 
x1 13 15 19 19 
x2 31 26 16 16 
x3 57 51 43 43 
x4 49 53 49 49 
f (x) 9.98e-11 2.33e-11 2.78e-12 2.78e-12 
Gear Ratio 0.14429 0.14428 0.14428 0.14428 
Error (%) 0.007398 0.000467 0.000467 0.000467 

Transistor Modeling 
Item BPSO QIPSO ATREPSO GMPSO 
x1 0.901019 0.90104 0.900984 0.90167 
x2 0.88419 0.884447 0.886509 0.877089 
x3 4.038604 4.004119 4.09284 3.532352 
x4 4.148831 4.123703 4.201832 3.672409 
x5 5.243638 5.257661 5.214615 5.512315 
x6 9.932639 9.997876 9.981726 10.80285 
x7 0.100944 0.096078 5.69e-06 0.56264 
x8 1.05991 1.062317 1.061709 1.074696 
x9 0.80668 0.796956 0.772014 0.796591 
f(x) 0.069569 0.066326 0.066282 0.065762 
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Table 9 Comparison results of real life problems (BPSO, QIPSO-1 and QIPSO-2) 

Gear Train Design 

Item BPSO QIPSO-1 QIPSO-2 

x1 13 19 13 

x2 31 16 20 

x3 57 43 34 

x4 49 49 53 

f (x) 9.989333e-11 2.7829e-012 2.33168e-011 

Gear Ratio 0.14429 0.14428 0.14428 

Error (%) 0.007398 0.000467 0.000467 
Transistor Modeling 

Item BPSO QIPSO-1 QIPSO-2 

x1 0.901019 0.901952 0.90107 

x2 0.88419 0.895188 0.653572 

x3 4.038604 3.66753 1.42074 

x4 4.148831 3.67355 2.0913 

x5 5.243638 5.44219 7.29961 

x6 9.932639 11.2697 10.00 

x7 0.100944 0.097903 4.09852 

x8 1.05991 1.10537 1.00974 

x9 0.80668 0.679967 1.59885 

f(x) 0.069569 0.061881 0.0514062 

Numerical results of real life problems are given in Tables 6 – 9. From these 
Tables, it is very difficult to claim the superiority of a particular algorithm over 
the others because the optimum function value obtained by all the algorithms is 
more or less similar. Although in some cases modified algorithms gave slightly 
better results than the basic PSO. This is probably due to the fact that both the real 
life problems, though nonlinear in nature, are small in size and do not pose any 
severe challenge for an optimization algorithm. 

7   Conclusions 

This article presents some recent simple and modified versions PSO. The 
algorithms considered may be divided into two classes; (1) algorithms without 
having any special operator but simply changing the initial configuration of the 
swarm and (2) algorithms having some special operator . 

In all nine modified versions of PSO are presented in this chapter. These are: 

 Gaussian Particle Swarm Optimization (GPSO) 
 Exponential Particle Swarm Optimization (EPSO) 
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 Lognormal Particle Swarm Optimization (LNPSO) 
 Sobol Particle Swarm Optimization (SOPSO) 
 Van der Corput Particle Swarm Optimization (VCPSO) 
 Attraction and Repulsion Particle Swarm Optimization (ATREPSO) 
 Gaussian Mutation Particle Swarm Optimization (GMPSO) 
 Quadratic Interpolation Particle Swarm Optimization (QIPSO) 

The first five algorithms namely GPSO, EPSO, LNPSO, SOPSO and VCPSO 
described in the chapter use different initialization schemes for generating the 
swarm population. These schemes include Gaussian, exponential and lognormal 
probability distributions and quasi random sequences Sobol and Vander Corput to 
initialize the swarm. As expected, PSO algorithms initialized with quasi random 
sequences performed much better than the PSO initiated with the usual computer 
generated random numbers having uniform distribution (Please also see Table 3). 
However the interesting part of the study is that PSO initiated with Gaussian, 
exponential and lognormal distribution improved its performance quite 
significantly (Please also see Table 2).  

The second part of the research consisted of modified PSO versions assisted 
with special operators like repulsion, mutation and crossover. In this part three 
algorithms called ATREPSO, GMPSO and QIPSO are given. The QIPSO is 
further modified into two versions QIPSO1 and QIPSO2. The common feature of 
these operator assisted PSO algorithms is that they all use diversity as guide to 
implement the operators. All the nine algorithms are applied on ten standard 
benchmark problems and two real life problems. The results obtained by these 
algorithms on the ten benchmark problems and two real life problems were either 
superior or at par with the basic PSO having uniform probability distribution to 
initialize the swarm. We did not compare the algorithms without any special 
operator with the ones having special operator because it will not be a fair 
comparison. However, among other algorithms PSO assisted with crossover 
operator QIPSO and its versions gave the best results. The present study may 
further be extended to solve the constrained optimization problems. Another 
interesting thing will be to combine PSO algorithms having different initialization 
scheme with PSO assisted with some special operator. 
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