
12

Peer-to-Peer Neighbor Selection Using Single
and Multi-objective Population-Based
Meta-heuristics

Hongbo Liu1,2, Ajith Abraham3, and Fatos Xhafa

1 School of Computer Science and Engineering, Dalian Maritime University,
116026 Dalian, China

2 Department of Computer, Dalian University of Technology,
116023 Dalian, China
lhb@dlut.edu.cn

3 Centre for Quantifiable Quality of Service in Communication Systems,
Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
ajith.abraham@ieee.org
http://www.softcomputing.net

4 Dept. de Llenguatges i Sistemes Informàtics
Universitat Politècnica de Catalunya
C/Jordi Girona 1-3, 08034 Barcelona, Spain
fatos@lsi.upc.edu

Summary. Peer-to-peer (P2P) topology has significant influence on the performance,
search efficiency and functionality, and scalability of the application. In this Chapter,
we introduce the problem of neighbor selection in peer-to-peer networks using two
population based meta-heuristics: Particle Swarm Optimization (PSO) algorithms and
Genetic Algorithms (GAs). Both a single objective and a multi-objective problem are
formulated, and then the P2P neighbor selection problem is defined. We present the
neighbor selection strategy based on PSO and GA algorithm. Each particle encodes the
upper half of the peer-connection matrix through the undirected graph, which reduces
the search space dimension. We also discuss the characteristics of ergodicity during
particle swarm searching process. We also illustrate the algorithm performance and
trace its feasibility and effectiveness with the help of some examples.

Keywords: P2P computing, Neighbor selection, Multi-objective optimization,
Population-based meta-heuristics, Genetic Algorithms, Particle Swarm Optimization.

12.1 Introduction

Peer-to-peer computing has attracted great interest and attention of the comput-
ing industry and gained popularity among computer users and their networked
virtual communities [1]. It is no longer just used for sharing music files over the
Internet. Many P2P systems have already been built for some new purposes and
are being used. An increasing number of P2P systems are used in corporate net-
works or for public welfare (e.g. providing processing power to fight cancer) [2].

F. Xhafa, A. Abraham (Eds.): Meta. for Sched. in Distri. Comp. Envi., SCI 146, pp. 323–340, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

324 H. Liu, A. Abraham, and F. Xhafa

P2P comprises peers and the connections between these peers. These connec-
tions may be directed, may have different weights and are comparable to a graph
with nodes and vertices connecting these nodes. Defining how these nodes are
connected affects many properties of an architecture that is based on a P2P
topology, which significantly influences the performance, search efficiency and
functionality, and scalability of a system. A common difficulty in the current
P2P systems is caused by the dynamic membership of peer hosts. This results
in a constant reorganization of the topology [3, 4, 5, 6, 7].

Kurmanowytsch et al. [8] developed the P2P middleware systems to provide
an abstraction between the P2P topology and the applications that are built
on top of it. These middleware systems offer higher-level services such as dis-
tributed P2P searches and support for direct communication among peers. The
systems often provide a pre-defined topology that is suitable for a certain task
(e.g., for exchanging files). Koulouris et al. [9] presented a framework and an
implementation technique for a flexible management of peer-to-peer overlays.
The framework provides means for self-organization to yield an enhanced flex-
ibility in instantiating control architectures in dynamic environments, which is
regarded as being essential for P2P services to access, routing, topology forming,
and application layer resource management. In these P2P applications, a central
tracker decides about which peer becomes a neighbor to which other peers.

Genetic Algorithms (GAs) are adaptive heuristic search algorithm premised
on the evolutionary ideas of natural selection. GAs have been widely studied,
experimented and applied in many fields in engineering worlds. Finding optimal
parameters for many real world problems prove difficult for traditional methods
but is suitable for GAs [10]. PSO (PSO) algorithm is inspired by social behavior
patterns of organisms that live and interact within large groups. In particular,
PSO incorporates swarming behaviors observed in flocks of birds, schools of fish,
or swarms of bees, and even human social behavior, from which the Swarm
Intelligence(SI) paradigm has emerged [11, 12]. It could be implemented and
applied easily to solve various function optimization problems, or the problems
that can be transformed to function optimization problems. As an algorithm,
the main strength of PSO is its fast convergence, which compares favorably with
many global optimization algorithms [13, 14]. In this chapter, we introduce the
P2P neighbor-selection problem based GA and PSO for P2P networks.

This chapter is organized as follows. We formulate the problem in Section 12.2.
The considered approaches based on GAs and PSO algorithms are presented in
Section 12.3. In Section 12.4, experiment results and discussions are provided in
detail, followed by some conclusions in Section 12.5.

12.2 Neighbor-Selection Problem in P2P Networks

Based on existing research [15, 16, 17, 18, 19, 20], we formulate the neighbor-
selection problem for P2P networks. We introduce first the model of P2P net-
works, and then discuss metrics for measuring neighbor selection.

12 P2P Neighbor Selection Using Single 325

12.2.1 Modelling P2P Networks

P2P networks can be modelled by an undirected graph G = (V, E) where
the vertex set V represents units such as hosts and routers, and the edge set
E represents physical links connecting pairs of communicating units. Further,
f : V → {1, · · · , n} is a labelling of its nodes, where n = |V |. For instance,
G could model the whole or part of the Internet. Given an undirected graph
G = (V, E) modelling an interconnection network, and a subset X ⊆ V (G) of
communicating units (peers), we can construct a corresponding weighted graph
D = (V, E), where V (D) = X , and the weight of each uv ∈ E(D) is equal to
the length of a shortest path between peer u and peer v in G. Usually we start
with a physical network G (perhaps representing the Internet), and then choose
a set of communicating peers X . The resulting distance graph D is the basis
for constructing a P2P graph H = (V, E), which is done as follows. The vertex
set V (H) will be the same as V (D), and edge set E(H) ⊆ D(G). The key issue
here is how to select E(H). If E = [eij]n×n is such that eij = 1 if (i, j) ∈ E,
and 0 otherwise, i.e., E is the incidence matrix of G, then the neighbor-selection
problem is to find a permutation of rows and columns which brings all non-zero
elements of E into the optimal possible interconnection around the diagonal.

12.2.2 Metrics

In P2P networks, specially for file sharing, an interested file is divided into many
fragments. The size of each fragment ranges from several hundred kilobytes to
several megabytes. When a new peer joins the network, it begins to download
fragments from other peers. As long as it obtains one fragment of the file, the
new peer can start to serve other peers by uploading fragments. Since peers
are downloading and uploading at the same time, when the network becomes
large, although the demands increase, the service provided by the network also
increases [21]. Given N peers, a graph G = (V, E) can be used to denote a
network, where the set of vertices V = {v1, · · · , vN} represents the N peers and
the set of edges E = {eij ∈ {0, 1}, i, j = 1, · · · , N} represents their connectivity
: eij = 1 if peers i and j are connected, and eij = 0 otherwise. For an undirected
graph, it is required that eij = eji for all i �= j, and eij = 0 when i = j. Let C be
the entire collection of content fragments, and {ci ⊆ C, i = 1, · · · , N} denotes
the collection of the content fragments each peer i shares. The disjointness of
contents from peer i to peer j is denoted by ci \ cj , which can be calculated as:

ci \ cj = ci − (ci ∩ cj). (12.1)

This disjointness can be interpreted as the collection of content fragments that
peer i has but peer j does not. In other words, it denotes the fragments that peer
i can upload to peer j. Note that the disjointness operation is not commutative,
i.e., ci \ cj �= cj \ ci. Let |ci \ cj | denote the cardinality of ci \ cj, which is the
number of content fragments peer i can contribute to peer j. In order to maximize
the disjointness of content, we maximize the number of content fragments each
peer can contribute to its neighbors by determining the connections eij ’s. Let

326 H. Liu, A. Abraham, and F. Xhafa

us define εij ’s to be sets such that εij = C if eij = 1, and εij = ∅ (null set),
otherwise. Therefore we have the following optimization problem:

f(x) = max
E

N∑

j=1

∣∣∣
N⋃

i=1

(ci \ cj) ∩ εij

∣∣∣ (12.2)

It is desirable to select peers with the most mutually disjoint collection of con-
tent fragments as neighbors. However, downloading the file fragments between
each peer pair would consume a lot of bandwidth and connection cost, etc. Let
τij denote the cost coefficient between peers i and j. The performance of the
whole system can be expressed as follows. The neighbor selection strategy is
expected not only to assure maximum content availability but also to minimize
the downloading cost to improve the overall throughput of the system. Therefore
we have the following multi-objective optimization problem:

f1(x) = max
E

N∑

j=1

∣∣∣
N⋃

i=1

(ci \ cj) ∩ εij

∣∣∣ (12.3)

f2(x) = min
E

N∑

j=1

N∑

i=1

τij |(ci \ cj)||εij | (12.4)

In the network, every node is a potential neighbor of each other node since
the network’s topology is a logical one. So the full connection is an ideal solution
for the peer’s connectivity. For the networks, however, we have to consider some
constraints [3, 20]:

• based on the underlying network characteristics, i.e., delay or capacity of
actual links;

• based on location of data and services;
• based on the nodes’s capabilities of managing peers, e.g., the number of direct

neighbors a node can maintain; some peers are tied down since they could
possess relatively more content fragments. Note that this resource constraint
can be independent of the underlying network.

In the environment, the maximum number of each peer needs to be considered,
i.e., each peer i will be connected to a maximum of di neighbors, where di < N .
Therefore there are two constraints for each peer:

N∑

j=1

eij ≤ di, for all i

N∑

i=1

eij ≤ dj , for all j

(12.5)

Definition 1. A neighbor-selection problem in P2P networks problem can be
defined as

∏
= (N, C, M, F, s), in which N is the number of peers, C is the entire

12 P2P Neighbor Selection Using Single 327

collection of content fragments, M is the maximum number of the peers, which
each peer can connect steadily in the session, F is a single objective to optimize
the number of swap fragments, or multi-objective to optimize the number of swap
fragments, and to minimize the downloading cost; s denotes the environment
constraints. The key components are operations, machines and data-hosts. A
P2P state is determined by N , C and M , i.e. S = (N, C, M). For the sake of
simplify, the neighbor-selection problem can be also represented in triple

∏
=

(S, F, s).

12.3 P2P Neighbor-Selection Strategy

GA and PSO algorithms share many similarities [22]. In GA, a population of
candidate solutions (for the optimization task to be solved) is initialized. New so-
lutions are created by applying reproduction operators (mutation and crossover).
The fitness (how good the solutions are) of the resulting solutions are evalu-
ated and suitable selection strategy is then applied to determine which solutions
will be maintained to the next generation. PSO algorithm is inspired by social
behavior patterns of organisms that live and interact within large groups. It
incorporates swarming behaviors observed in flocks of birds, schools of fish, or
swarms of bees, and even human social behavior. In this section, we discuss P2P
neighbor selection strategy based on PSO and GA algorithms.

12.3.1 Particle Swarm Algorithm for Single Objective Neighbor
Selection

To apply the particle swarm algorithm successfully for the NS problem, one of
the key issues is the mapping of the problem solution into the particle space,
which directly affects its feasibility and performance. Usually, the particle’s po-
sition is encoded to map each dimension to one directed connection between
peers, i.e. the dimension is N ∗ N . But the neighbor topology in P2P networks
is an undirected graph, i.e. eij = eji for all i �= j. We set up a search space of D
dimension as N ∗ (N − 1)/2. Accordingly, each particle’s position is represented
as a binary bit string of length D. Each dimension of the particle’s position
maps one undirected connection. The domain for each dimension is limited to
0 or 1.

The particle swarm model consists of a swarm of particles, which are initialized
with a population of random candidate solutions. They move iteratively through
the D-dimension problem space to search the new solutions, where the fitness f
can be measured by calculating the number of swap fragments in the potential
solution. Each particle has a position represented by a position-vector pi (i is
the index of the particle), and a velocity represented by a velocity-vector vi.
Each particle remembers its own best position so far in a vector p#

i , and its
j-th dimensional value is p#

ij . The best position-vector among the swarm so far
is then stored in a vector p∗, and its j-th dimensional value is p∗j . When the

328 H. Liu, A. Abraham, and F. Xhafa

particle moves in a state space restricted to zero and one on each dimension, the
change of probability with time steps is defined as follows:

P (pij(t) = 1) = f(pij(t − 1), vij(t − 1), p#
ij(t − 1), p∗j (t − 1)), (12.6)

where the probability function is

sig(vij(t)) =
1

1 + e−vij(t)
. (12.7)

At each time step, each particle updates its velocity and moves to a new
position according to Eqs. (12.8) and (12.9):

vij(t) = wvij(t − 1) + c1r1(p
#
ij(t − 1) − pij(t − 1))

+ c2r2(p∗j (t − 1) − pij(t − 1))
(12.8)

pij(t) =

{
1 if ρ < sig(vij(t));
0 otherwise.

(12.9)

where c1 is a positive constant, called coefficient of the self-recognition com-
ponent, c2 is a positive constant, called coefficient of the social component; r1
and r2 are random numbers in the interval [0,1]. The variable w is called as the
inertia factor, whose value is typically setup to vary linearly from 1 to near 0
during the iterated processing and ρ is a random number in the closed interval
[0, 1]. From Eq. (12.8), a particle decides where to move next, considering its
current state, its own experience, which is the memory of its best past position,
and the experience of its most successful particle in the swarm. The particle has
a priority levels according to the order of peers. The sequence of the peers will
be not changed during the iteration. Each particle’s position indicates the po-
tential connection state. The pseudo-code for the particle swarm search method
is illustrated in Algorithm 12.1.

In multi-dimensional search space, the characteristics of ergodicity is of vital
importance to an algorithm. We discuss them for the particle swarm optimiza-
tion. Clerc and Kennedy have stripped the particle swarm model down to a most
simple form [23, 24]. If the self-recognition component c1 and the coefficient of
the social-recognition component c2 in the particle swarm model are combined
into a single term c, i.e. c = c1 + c2, the best position pi can be redefined as
follows:

pi ← (c1pi + c2pg)
(c1 + c2)

(12.10)

Then, the update of the particle’s velocity is defined by:

vi(t) = vi(t − 1) + c(pi − xi(t − 1)) (12.11)

12 P2P Neighbor Selection Using Single 329

Algorithm 12.1. Neighbor Selection Algorithm Based on Particle Swarm
01.Initialize the size of the particle swarm n, and other parameters.
02.Initialize the positions and the velocities for all the particles randomly.
03.While (the stopping criterion is not met) do
04. t = t + 1;
05. For s = 1 to n
06. For i = 1 to N
07. For j = 1 to N
08. If j == i, eij = 0;
09. If j < i, a = j; b = i;
10. If j > i, a = i; b = j;
11. eij = p[a∗N+b−(a+1)∗(a+2)/2];
12. if eij = 1, calculate ci \ cj ;
13. Calculate f = f +

∣∣∣
⋃N

i=1(ci \ cj) ∩ εij

∣∣∣;
14. p∗ = argminn

i=1(f(p∗(t − 1)), f(p1(t)),
15. f(p2(t)), · · · , f(pi(t)), · · · , f(pn(t)));
16. For s = 1 to n
17. p#

i (t) = argminn
i=1(f(p#

i (t − 1)), f(pi(t));
18. For d = 1 to D
19. Update the d-th dimension value of pi and vi

20. according to Eqs. (12.8) and (12.9);
21. End While

The system can be simplified even further by using yi(t − 1) instead of pi −
xi(t − 1). Thus, the reduced system is then:

{
v(t) = v(t − 1) + cy(t − 1)
y(t) = −v(t − 1) + (1 − c)y(t − 1)

This recurrence relation can be written as a matrix-vector product, so that

[
v(t)
y(t)

]
=

[
1 c

−1 1 − c

]
·
[
v(t − 1)
y(t − 1)

]

Let

Pt =
[
vt

yt

]

and

A =
[

1 c
−1 1 − c

]

we have an iterated function system for the particle swarm model:

Pt = A · Pt−1 (12.12)

330 H. Liu, A. Abraham, and F. Xhafa

−4 −2 0 2 4 6
1

2

3

4

5

6

7

8

c

n
o

rm
(A

)

Fig. 12.1. Norm of A

Thus, the system is completely defined by A. Its norm ‖A‖2 (also written ‖A‖)
is determined by c. The relationship of A and its dependence on c is illustrated
in Fig. 12.1.

Note that it is possible to find different trajectories of the particle for var-
ious values of c. Fig. 12.2(a) illustrates the system for a torus when c=2.9;
Fig. 12.2(b), a hexagon with spindle sides when c=2.99; Fig. 12.2(c), a trian-
gle with spindle sides when c=2.999; Fig. 12.2(d) and a simple triangle when
c=2.9999. As depicted in Fig. 12.2, the iteration time step used is 100 for all
the cases. Another system sensitivity instance is illustrated in Fig. 12.3. It is to
be noted that Figs. 12.2 and 12.3 illustrate only some 2-dimensional representa-
tions of the iterated process. A comparison between 2D and 3D is illustrated in
Fig. 12.4.

12.3.2 Genetic Algorithm for Multi-objective Neighbor Selection

Multi-objective GAs are very popular multi-objective techniques, which nor-
mally exhibit good overall performance. Many multi-objective optimization
techniques using evolutionary algorithms have been proposed in recent years
[22, 25, 26]. Given a P2P state S, the multi-objective neighbor selection is not
only to maximize Eq. (12.3) but also to minimize Eq. (12.4) with the constraint
in Eq. (12.5).

Similarly, we adopt the upper-half-triangle encoding representation in our
genetic algorithm for the NS problem. We also set up a search space of D di-
mension as N ∗(N −1)/2. Accordingly, each individual is represented as a binary
bit string of length D. The pseudo-code for our P2P neighbor selection method
is illustrated in Algorithm 12.2.

12 P2P Neighbor Selection Using Single 331

−15 −10 −5 0 5 10 15
−10

−5

0

5

10

v

y

−10 −5 0 5 10
−5

0

5

v

y

−10 −5 0 5 10 15
−10

−5

0

5

10

v

y

−20 −10 0 10 20
−10

−5

0

5

10

15

v

y

(a)

(d)

(b)

(c)

Fig. 12.2. Trajectory of the particle (a) c = 2.9, (b) c = 2.999, (c) c = 2.999, (d)
c = 2.9999

−5 0 5
−4

−2

0

2

4

v

y

−30 −20 −10 0 10 20 30
−20

−10

0

10

20

v

y

−40 −20 0 20 40
−20

−10

0

10

20

v

y

−300 −200 −100 0 100 200 300
−200

−100

0

100

200

v

y

(a) (b)

(c) (d)

Fig. 12.3. Trajectory of the particle (a) c = 3.7321, (b) c = 3.8, (c) c = 3.9, (d)
c = 3.999

332 H. Liu, A. Abraham, and F. Xhafa

−5 0 5
−4

−3

−2

−1

0

1

2

3

4

v

y

0

50

100

−5

0

5
−4

−2

0

2

4

timestep
v

y
(a) (b)

Fig. 12.4. 2D versus 3D (a) 2D: c = 1.3820, (b) 3D: c = 1.3820

Algorithm 12.2. Neighbor Selection Algorithm Based on Genetic Algorithm
01. Initialize the population, and other parameters.
02. While (the stopping criterion is not met) do
03. Evaluate();
04. for i = 1 to N
05. for j = 1 to N
06. if j == i, eij = 0;
07. else if j < i, a = j; b = i;
08. else if j > i, a = i; b = j;
09. eij = p[a∗N+b−(a+1)∗(a+2)/2];
10. If eij = 1, calculate ci \ cj ;
11. Calculate f2 = f2 + τij |(ci \ cj)|;
12. Next j

13. calculate f1 = f1 +
∣∣∣
⋃N

i=1(ci \ cj) ∩ εij

∣∣∣;
14. Rank();
15. If nondomCtr> MaxArchiveSize, maintenance-archive();
16. Generate-new-pop();
17. Crossover();
18. Mutation();
19. t + +;
20. If rank == 1 output the fitness;
21. End While

12.4 Algorithm Performance Evaluation

To illustrate the effectiveness and performance of the considered algorithms, we
illustrate the neighbor-selection process and results through some test problems.
The specific parameter settings of the algorithms are described in Table 12.1.

12 P2P Neighbor Selection Using Single 333

Table 12.1. Parameter settings for the algorithms

Algorithm Parameter name Value
Size of the population int(10 + 2sqrt(D))

GA Probability of crossover 0.8
Probability of mutation 0.08
Swarm size int(10 + 2sqrt(D))
Self coefficient c1 2

PSO Social coefficient c2 2
Inertia weight w 0.9
Clamping Coefficient ρ 0.5

12.4.1 Single Objective Neighbor Selection

We first illustrate an execution trace of the algorithm for the NS problem. A file
of size 7 MB is divided into 14 fragments (512 KB each) to distribute, 6 peers
download from the P2P networks, and the connecting maximum number of each
peer is 3, which is represented as (6, 14, 3) problem. In some session, the state of
distributed file fragments is as follows:

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0 4 0 6 7 8 0 10 0 12 0 14
0 0 0 4 5 0 7 0 9 0 11 0 13 0
0 2 0 0 0 6 0 0 0 0 11 12 0 14
0 2 3 4 0 6 0 0 0 0 11 0 0 0
0 2 0 0 0 0 7 8 0 10 0 12 0 14
1 2 0 0 5 0 0 0 9 10 11 0 13 14

⎤

⎥⎥⎥⎥⎥⎥⎦

0 10 20 30 40 50
8720.5

8721

8721.5

8722

8722.5

8723

8723.5

8724

8724.5

8725

Iteration

f

GA
PSO

Fig. 12.5. Performance for the NS (25, 1400, 12)

334 H. Liu, A. Abraham, and F. Xhafa

0 10 20 30 40 50
1.0517

1.0518

1.0518

1.0519

1.0519

1.0519

1.052

1.052
x 10

4

Iteration

f

GA
PSO

Fig. 12.6. Performance for the NS (30, 1400, 15)

0 10 20 30 40 50 60 70 80
1.2328

1.2329

1.233

1.2331

1.2332

1.2333

1.2334

1.2335
x 10

4

Iteration

f

GA
PSO

Fig. 12.7. Performance for the NS (35, 1400, 17)

12 P2P Neighbor Selection Using Single 335

50 55 60 65 70 75 80
0

20

40

60

80

100

120

140

160

180

200

f
1

f 2

GA
PSO

Fig. 12.8. Performance for the NS (6, 60, 3)

1914 1916 1918 1920 1922 1924 1926 1928 1930
3.6

3.8

4

4.2

4.4

4.6

4.8
x 10

5

f
1

f 2

GA
PSO

Fig. 12.9. Performance for the NS (25, 300, 12)

336 H. Liu, A. Abraham, and F. Xhafa

8695 8700 8705 8710 8715 8720 8725
1.7

1.8

1.9

2

2.1

2.2

2.3

2.4
x 10

6

f
1

f 2

GA
PSO

Fig. 12.10. Performance for the NS (25, 1400, 12)

2317 2318 2319 2320 2321 2322
5.8

6

6.2

6.4

6.6

6.8

7

7.2
x 10

5

f
1

f 2

GA
PSO

Fig. 12.11. Performance for the NS (30, 300, 15)

12 P2P Neighbor Selection Using Single 337

1.0511 1.0512 1.0513 1.0514 1.0515 1.0516 1.0517 1.0518 1.0519 1.052 1.0521

x 10
4

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3
x 10

6

f
1

f 2

GA
PSO

Fig. 12.12. Performance for the NS (30, 1400, 15)

0 5 10 15 20 25 30 35
0

50

100

150

f
1

f 2

Fig. 12.13. Performance for the NS (6, 60, 3)

338 H. Liu, A. Abraham, and F. Xhafa

The optimal result search by the proposed algorithm is 31, and the neighbor
selection solution is shown in the matrix below:

⎛

⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6
1 0 0 0 1 1 1
2 0 0 0 0 1 1
3 0 0 0 1 1 1
4 1 0 1 0 0 0
5 1 1 1 0 0 0
6 1 1 1 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠

We also tested three other representative instances (problem (25,1400,12),
problem (30,1400,15) and problem (35,1400,17)). In our experiments, the
algorithms used for comparison were GA and PSO.

The PSO/GA algorithms were repeated 4 times with different random seeds.
Each trial had a fixed number of 50 / 80 iterations. Other specific parameter
settings of the algorithms are described in Table 12.1. The average fitness val-
ues of the best solutions throughout the optimization run were recorded. The
average and the standard deviation were calculated from the 4 different trials.
Figs. 12.5, 12.6 and 12.7 illustrate the PSO/GA performance during the search
processes for the NS problem. As evident, PSO obtained better results much
faster than GA, especially for large scale problems.

12.4.2 Multi-objective Neighbor Selection

We demonstrate an execution trace of the algorithm for the first NS problem
in last subsection, i.e., (6, 14, 3) problem. In this problem, the network cost is
considered; the corresponding cost matrix is as follows:

⎡

⎢⎢⎢⎢⎢⎢⎣

0 5 2 4 1 0
5 0 3 0 2 2
2 3 0 0 0 0
4 0 0 0 5 2
1 2 0 5 0 10
0 2 0 2 10 0

⎤

⎥⎥⎥⎥⎥⎥⎦

The PSO/GA algorithms were repeated 3 times with different random seeds.
Each trial had a fixed number of 200 iterations. The average fitness values of
the best (rank = 1) solutions throughout the optimization run were recorded.
The performance output is illustrated in Fig. 12.13 by the proposed algorithm.
We also tested other five representative instances (problem (6,60,3), problem
(25,300,12), problem (25,1400,12), problem (30,300,15), problem (30,1400,15))
further. Figs. 12.8, 12.9, 12.10, 12.11 and 12.12 illustrate the GA/PSO perfor-
mance during the search processes for the NS problem. As evident, GA usually
obtained better results than PSO.

12 P2P Neighbor Selection Using Single 339

12.5 Conclusions

In this chapter, we introduced the problem of neighbor selection in peer-to-peer
networks using a Particle Swarm Optimization and Genetic Algorithms. We first
introduced the model of Peer-to-Peer networks and discussed measuring metrics
for P2P neighbor selection. Both a single and a multi-objective formulations are
given, and then the P2P neighbor selection problem is defined. In the considered
approaches, we presented an upper-half-triangle encoding representation method.
The particle/individual was encoded by the upper half matrix of the peer con-
nection through the undirected graph, which reduces the dimension of the search
space. We evaluated the performance of the algorithms. The results indicate that
PSO usually required shorter time than GA, specially for large scale problems.
PSO could be an ideal approach for solving the single objective NS problem, while
GA usually obtain better results than PSO in the multi-objective NS problems.

Acknowledgements

This work was partly supported by NSFC (60373095), DLMU (DLMU-ZL-
200709). F. Xhafa acknowledges partial support by Projects ASCE TIN2005-
09198-C02-02, FP6-2004-ISO-FETPI (AEOLUS) and MEC TIN2005-25859-E
and FORMALISM TIN2007-66523.

References

1. Kwok, S.: P2P searching trends: 2002-2004. Information Processing and Manage-
ment 42, 237–247 (2006)

2. Idris, T., Altmann, J.: A Market-managed topology formation algorithm for peer-
to-peer file sharing networks. In: Stiller, B., Reichl, P., Tuffin, B. (eds.) ICQT 2006.
LNCS, vol. 4033, pp. 61–77. Springer, Heidelberg (2006)

3. Surana, S., Godfrey, B., Lakshminarayanan, K., Karp, R., Stoica, I.: Load bal-
ancing in dynamic structured peer-to-peer systems. Performance Evaluation 63,
217–240 (2006)

4. Duan, H., Lu, X., Tang, H., Zhou, X., Zhao, Z.: Proximity neighbor selection in
structured P2P network. In: Proceedings of Sixth IEEE International Conference
on Computer and Information Technology, p. 52 (2006)

5. Koo, S., Kannan, K., Lee, C.: A genetic-algorithm-based neighbor-selection strat-
egy for hybrid peer-to-peer networks. In: Proceedings of the 13th IEEE Inter-
national Conference on Computer Communications and Networks, pp. 469–474
(2004)

6. Schollmeier, R.: A definition of peer-to-peer networking for the classification of
peer-to-peer architectures and applications. In: Proceedings of the First Interna-
tional August Conference on Peer-to-Peer Computing, pp. 101–102 (2001)

7. Ghosal, D., Poon, B.K., Kong, K.: P2P contracts: a framework for resource and
service exchange. Future Generation Computer Systems 21, 333–347 (2005)

8. Kurmanowytsch, R., Kirda, E., Kerer, C., Dustdar, S.: OMNIX: A topology-
independent P2P middleware. In: Proceedings of the 15th Conference on Advanced
Information Systems Engineering (2003)

340 H. Liu, A. Abraham, and F. Xhafa

9. Koulouris, T., Henjes, R., Tutschku, K., de Meer, H.: Implementation of adaptive
control for P2P overlays. In: Wakamiya, N., Solarski, M., Sterbenz, J.P.G. (eds.)
IWAN 2003. LNCS, vol. 2982, pp. 292–306. Springer, Heidelberg (2004)

10. Quagliarella, D., Périaux, J., Poloni, C., Winter, G. (eds.): Genetic Algorithms in
Engineering and Computer Science. John Wiley & Sons Ltd., Chichester (1997)

11. Kennedy, J., Eberhart, R.: Swarm Intelligence. Morgan Kaufmann, San Francisco
(2001)

12. Clerc, M.: Particle Swarm Optimization. ISTE Publishing Company, London
(2006)

13. Abraham, A., Guo, H., Liu, H.: Swarm intelligence: foundations, perspectives and
applications. In: Nedjah, N., Mourelle, L. (eds.) Swarm Intelligent Systems. Studies
in Computational Intelligence, pp. 3–25. Springer, Heidelberg (2006)

14. Liu, H., Sun, S., Abraham: A Particle swarm approach to scheduling work-flow ap-
plications in distributed data-intensive computing environments. In: Proceedings
of The Sixth International Conference on Intelligent Systems Design and Applica-
tions, pp. 661–666 (2006)

15. Sen, S., Wang, J.: Analyzing Peer-to-Peer Traffic Across Large Networks.
IEEE/ACM Transactions on Networking 12(2), 219–232 (2004)

16. Liu, Y., Xiao, L., Esfahanian, A., Ni, L.M.: Approaching Optimal Peer-to-Peer
Overlays. In: Proceedings of the 13th IEEE International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems, pp. 407–
414 (2005)

17. Belmonte, M.V., Conejo, R., Dı́az, M., Pérez-de-la-Cruz, J.L.: Coalition Formation
in P2P File Sharing Systems. In: Maŕın, R., Onaind́ıa, E., Bugaŕın, A., Santos, J.
(eds.) CAEPIA 2005. LNCS (LNAI), vol. 4177, pp. 153–162. Springer, Heidelberg
(2006)

18. Koo, S., Kannan, K., Lee, C.: On neighbor-selection strategy in hybrid peer-to-peer
networks. Future Generation Computer Systems 22, 732–741 (2006)

19. Ghanea-Hercock, R.A., Wang, F., Sun, Y.: Self-Organizing and Adaptive Peer-to-
Peer Network. IEEE Transactions on Systems, Man, and Cybernetics - Part B:
Cybernetics 36(6), 1230–1236 (2006)

20. Wang, S., Chou, H., Wei, D., Kuo, S.: On the Fundamental Performance Limits
of Peer-to-Peer Data Replication in Wireless Ad hoc Networks. IEEE Journal on
Selected Areas in Communications 25(1), 211–221 (2007)

21. Qiu, D., Sang, W.: Global Stability of Peer-to-Peer File Sharing Systems. Computer
Communications (2007) doi:10.1016/j.comcom.2007.08.012

22. Abraham, A.: Evolutionary computation. In: Sydenham, P., Thorn, R. (eds.) Hand-
book for Measurement Systems Design, pp. 920–931. John Wiley and Sons Ltd.,
London (2005)

23. Clerc, M., Kennedy, J.: The Particle Swarm-explosion, Stability, and Convergence
in A Multidimensional Complex Space. IEEE Transactions on Evolutionary Com-
putation 6, 58–73 (2002)

24. Liu, H., Abraham, A., Clerc, M.: Chaotic Dynamic Characteristics in Swarm In-
telligence. Applied Soft Computing 7, 1019–1026 (2007)

25. Abraham, A., Jain, L.: Evolutionary Multi-objective Optimization. In: Abraham,
A., Jain, L.C., Goldberg, R. (eds.) Evolutionary Multi-objective Optimization:
Theoretical Advances and Applications, ch. 1, pp. 1–9. Springer, London (2005)

26. Srinivas, N., Deb, K.: Multi-objective optimization using nondominated sorting
genetic algorithms. Evolutionary Computation 2(3), 221–248 (1994)

	Introduction
	Neighbor-Selection Problem in P2P Networks
	 Modelling P2P Networks
	 Metrics

	P2P Neighbor-Selection Strategy
	Particle Swarm Algorithm for Single Objective Neighbor Selection
	 Genetic Algorithm for Multi-objective Neighbor Selection

	Algorithm Performance Evaluation
	 Single Objective Neighbor Selection
	 Multi-objective Neighbor Selection

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

