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Abstract—The development of niching methods is a very active 
research area within multimodal optimization. It includes not 
only the creation of new methods, but the formalization of 
hybrid methodologies resulting from the application of basic 
niching techniques to global optimization metaheuristics. In 
this paper, we discuss some preliminary results of a recently 
proposed metaheuristic algorithm, Variable Mesh 
Optimization (VMO), in the context of multimodal problems. 
To overcome some of the encountered limitations, a revamped 
version called Niche-Clearing-based Variable Mesh 
Optimization (NC-VMO) is put forth. NC-VMO demonstrated 
its ability to optimize multimodal functions by using a niche 
clearing technique. Experimental results confirm that the 
proposed approach is also competitive with other niche-based 
optimization methods in the literature. 

Keywords — clearing procedure; niching methods; 
multimodal optimization; variable mesh optimization 

I. INTRODUCTION 
Most real-coded evolutionary algorithms are devised for 

only locating a single global optimum, while ignoring other 
global (if any) and local optima as well. However, a variety 
of domains demand the search for multiple optima, may it be 
of local or global nature [40-42]. The last decades have 
witnessed an increasing interest paid to such problem by 
researchers in the evolutionary optimization community, to 
the extent that a new term (evolutionary multimodal 
optimization) has been coined [8, 22]. Inspired by 
ecosystems in nature, niching methods are a plausible 
attempt to approach multimodal optimization tasks. 

All ecosystems have many different physical spaces 
(niches) with a finite amount of material resources to be 
shared among the individuals that belong to the same niche. 
Thus, the ecosystems allow not only the formation but also 
the maintenance of dissimilar species competing to survive. 
Niching methods encourage diversity by speciation, i.e. they 
split the population into distinct subpopulations (niches) 
occupying certain areas of the search space. In an 
optimization scenario, the fitness symbolizes the resources of 

the niche and the species are defined as related individuals 
according to certain similarity metric, while every niche 
corresponds to an optimum of the fitness landscape [2]. 
Despite the large number of niche-based algorithms, there 
are still many drawbacks regarding such methods. For 
instance, most niching techniques are unable to solve a 
multimodal problem of a relatively large size or with a fairly 
large number of optima. In addition, drastic limitations on 
their computational complexity still persist.  

Therefore, this is an active research area concerning both 
how to improve the performance of niching methods and 
how to hybridize them with global optimization 
metaheuristics so as to benefit from their synergy in order to 
deal with multimodality. As an evidence of the latter, there 
are many examples reported in the literature including 
niching not only in Genetic Algorithms (GA) [7, 12, 13, 21, 
30], but in Particle Swarm Optimization [16, 26], 
Evolutionary Strategies [24] and so on. 

Variable Mesh Optimization (VMO) [6] is a recently 
proposed metaheuristic for global optimization. It yielded 
competitive results when compared with outstanding state-
of-the-art schemes in continuous optimization. VMO 
features three search operators, one aimed at global 
exploration and two for local optima exploitation. Thus, 
VMO seems to be a promising multimodal problem solver.  

In this work, the following scientific contributions are 
made: (1) we shed light on empirical results regarding 
VMO’s performance in multimodal optimization and (2) we 
put forward an improved VMO version termed “Niche-
Clearing-based Variable Mesh Optimization” (NC-VMO), 
thus showcasing the benefits of coupling the canonical VMO 
formulation with a well-known niche formation procedure 
proposed by Pétrowski [4]. Besides the creation of a 
competitive VMO-based model, as far as we are concerned 
this is the first time niching methods are amalgamated with 
VMO. Empirical results confirm that this is a plausible 
mechanism to approximate multimodal functions.  

The remainder of this paper is structured as follows. A 
short literature review is provided in Section II. Section III 



elaborates on basic aspects of the VMO metaheuristic 
whereas the niche formation procedure is briefly described in 
Section IV. The hybrid niching-VMO scheme is presented in 
Section V. A time complexity analysis for both methods is 
made in Section VI. The experimental framework is detailed 
in Section VII while Section VIII discusses VMO and NC-
VMO’s performance on multimodal problems. Finally, 
conclusions and future work are outlined. 

II. BRIEFLY REVIEWING NICHING METHODS 
Literature on nature-inspired optimization algorithms 

includes a large variety of niching techniques. Cavicchio’s 
pre-selection operator [12] is one of the first niching 
techniques. It was generalized in crowding by De Jong [21]. 
Mahfoud made subsequent modifications to crowding so as 
to reduce replacement errors, restore selection pressure and 
remove the parameter called “crowding factor” (CF), thus 
resulting in the deterministic crowding [30]. By means of a 
deterministic tournament, crowding favors higher-fitness 
individuals over lower-fitness ones. Hence, it leads to a loss 
of niches in a tournament between global and local niches. 
To avoid such deterministic nature, a technique named 
“probabilistic crowding” was introduced in [23], which uses 
a probabilistic replacement rule. In a later approach, the 
multi-niche crowding genetic algorithm (MNC GA) [33], 
both selection and replacement operators are influenced by 
some kind of crowding in a way that no prior knowledge of 
the problem is required and no constraint affects either 
selection or replacement.  

According to Sareni [8], among all the niching methods, 
fitness sharing (FS) is perhaps the most popular one. 
Introduced in [18], the idea is that an individual has only 
limited resources to share with others in the same niche. In 
spite of its proven worth, this technique has several 
drawbacks, e.g. it depends on the values of two parameters 
(the niche radius and the scaling factor), which cannot be 
easily determined. As a consequence, more advanced fitness 
sharing methods have been created such as implicit fitness 
sharing [27], where the fitness of each agent depends on the 
fitness values of the remaining individuals in the population, 
as well as the dynamic niche sharing (DNS) [7] and the 
dynamic fitness sharing (DFS) [2], both aiming at the self-
identification of the niches in the population. Co-
evolutionary sharing [14] tries to avoid the estimation of the 
niche radius while the sharing scheme based on niche 
identification techniques proposed in [10] is capable of 
locating the center and estimating the radius of each niche 
based on fitness topographical information.  

Restricted tournament selection [17], clearing [4] and 
clustering [19] are other classical niching methods. The use 
of fuzzy logic in clearing and clustering respectively gave 
rise to the fuzzy clearing [34] and the genetic algorithm with 
sharing and fuzzy clustering (GASH-FC) [3]. In the latter 
approach, the number of niches is self-determined by 
constantly updating each niche radius until an optimal 
solution is found. Additional illustrative examples are 
sequential niching [11] and the species-conserving genetic 
algorithm (SCGA) by Li et al. [20]. 

Niching methods have also influenced Particle Swarm 
Optimization (PSO) –including NichePSO [26] and SPSO 
[16]–, as well as Differential Evolution (DE) –e.g. the 
species-based DE [35] and the Differential Evolution with an 
ensemble of Restricted Tournament Selection [9]. Besides, 
niching principles have been applied to combinatorial 
optimization problems [37, 28] and multi-objective ones too 
[32, 38]. 

Consistent efforts have been made in order to devise 
niching strategies in absence of parameters derived from a 
priori knowledge about the fitness landscape, like the lbest 
PSO niching algorithms using a ring topology [36] and the 
Adaptive Species Discovery [1] as well. Other techniques 
have been crafted to automatically approximate effective 
values for such parameters, e.g. the Adaptive Niching PSO 
[29] and the CMA-ES niching algorithm [25]. These 
schemes are concerned with what is perhaps the most 
common limitation encountered in the niching methods 
arena, i.e. their dependency on parameters which are often 
hard to set since prior knowledge about the problem is 
usually unavailable in real-world scenarios. Additionally, 
some niching techniques try to find solely all global optima, 
hence they ignore local ones. Finally, other drawbacks to be 
stated are that most niching algorithms perform defectively 
when the dimensionality of the problem or the number of 
optima increases, and some schemes cannot successfully 
preserve the previously found solutions.  

Our proposed approach, NC-VMO, utilizes Pétrowski’s 
classical niche clearing operator [4] as an addition to the 
original VMO formulation. This is consistent with the goal 
of this work, i.e. to corroborate VMO’s capability to deal 
with multimodality instead of putting together a very 
competitive VMO multimodal scheme. 

III. VARIABLE MESH OPTIMIZATION 
This section briefly touches on the major algorithmic 

aspects of the VMO metaheuristic. 

A. Algorithmic description 
Variable Mesh Optimization is a population-based 

metaheuristic where solutions are represented in a mesh by a 
set of T nodes 𝑛!, 𝑛!,⋯ , 𝑛!. Each node is encoded as a 
vector of M real values    𝑛! 𝑣!! , 𝑣!! ,⋯ 𝑣!!⋯ , 𝑣!! ;   𝑗 = 1…𝑀. 
The VMO algorithm is described by the pseudo code shown 
in Fig. 1, as a simplified version from that presented in [6]: 

In this search process, the balance between exploration 
and exploitation is ensured by combining two phases: 
expansion and contraction. During the expansion, new nodes 
are generated toward the local and the global optima, and 
also from those in the mesh frontier. After that, the initial 
mesh for the next iteration is built in the contraction phase. 
VMO uses four main parameters: the initial population size 
(P) for all iterations, the maximum number of individuals (T) 
after the mesh expansion, the number of mesh nodes in the 
neighborhood (k) and the stop criterion (C). 

B. Adaptive clearing operator 
The VMO’s adaptive clearing operator has a direct 

influence on its performance in multimodal problems as it is 



discussed in Section VIII. In VMO, the contraction phase is 
in charge of selecting which individuals survive in the 
current iteration. Thus, based on an elitist strategy, nodes are 
sorted by their fitness values in such a way that survivor 
selection begins for that node with the best fitness. Before 
selection is over, an adaptive clearing operator is applied to 
the sorted nodes; they are sequentially compared and the 
worst among those closer (in fitness) than a threshold are 
deleted from the mesh. The value of such threshold for each 
of the M dimensions of the optimization problem is 
calculated as: 

 𝜀! =

  𝑟𝑎𝑛𝑔𝑒 𝑎! ,   𝑏! 2             𝑖𝑓 𝑐 < 0.15𝐶                              
  𝑟𝑎𝑛𝑔𝑒 𝑎! ,   𝑏! 4             𝑖𝑓 0.15𝐶 ≤   𝑐 < 0.3𝐶
𝑟𝑎𝑛𝑔𝑒 𝑎! ,   𝑏! 8           𝑖𝑓 0.3𝐶 ≤   𝑐 < 0.6𝐶    
𝑟𝑎𝑛𝑔𝑒 𝑎! ,   𝑏! 16     𝑖𝑓 0.6𝐶 ≤   𝑐 < 0.8𝐶      
  𝑟𝑎𝑛𝑔𝑒 𝑎! ,   𝑏! 100   𝑖𝑓 𝑐 ≥ 0.8𝐶                                      

 (1) 

where 𝑟𝑎𝑛𝑔𝑒 𝑎! ,   𝑏!  are the domain boundaries j-th 
dimension (𝑗 = 1…𝑀), while c is the current control value 
related to the stop criterion C (e.g. number of iterations) 

 
Figure 1.  VMO’s pseudo code. 

IV. CLEARING-BASED NICHE FORMATION TECNIQUE 
Clearing [4] is a well-known procedure among niche 

formation methods, whose common denominator is the 
creation of stable subpopulations (niches) at all local optima 
(peaks) in the search space.  

Every niche has a dominant (master) individual, i.e. the 
one with the best fitness. An individual belongs to a certain 
niche if its distance to the master is less than a given 
threshold known as the clearing radius. The method shares 
the resources of a niche among a fixed number of winners 
(individuals to be benefited by clearing), while it sets to zero 
the fitness of all other individuals in the same niche. 

Depending on the fixed number of winners, the method 
might deal with more than a single one. In any case, the 
winner is the individual with the best fitness. Those subdued 
by the winner and the winner itself are fictitiously removed 
from the population. After repeating this procedure for a 
certain number of iterations, all winners emerge. 

 
Figure 2.  Pseudo code for the clearing-based niche formation technique. 

The pseudo code for this niche formation algorithm is 
depicted in Fig. 2. Population Pp consists of an array of S 
individuals, σ denotes the clearing radius, κ is the niche 
capacity (maximum number of individuals) and nbWinners is 
the number of winners of the subpopulation in the current 
niche. 

V. NICHE-CLEARING-BASED VMO 
Niche-Clearing-based Variable Mesh Optimization (NC-

VMO) stems from applying the clearing procedure to VMO. 
Fig. 3 describes NC-VMO via pseudo code. Steps 
corresponding to the changes introduced are highlighted in 
italic. We discuss these modifications in Section VIII. 

In NC-VMO, the contraction process starts (in step 16) 
by applying the niche formation technique (as detailed in 
Section IV), which operates over the previously expanded 
mesh. The identified niches are then affected (in step 19) by 
the VMO’s adaptive clearing operator, described in Section 
III.B. Consequently, there is an evident difference between 
VMO and NC-VMO regarding when the adaptive clearing 

1. begin 
2. Randomly generate P nodes for the initial mesh 

(3P ≤ T)  
3. Select the global best in the initial mesh 
4. repeat 
5. for each node in initial mesh do 
6. Find its closest k nodes by their spatial locations 
7. Select the best neighbor as per the fitness values 
8. if current node is not the local best then 
9. Generate a new node toward the local best 
10. end if 
11. end for 
12. for each node in initial mesh but the global best do 
13. Generate a new node toward the global best 
14. end for 
15. Generate nodes from nodes in the mesh frontier 

(up to T nodes in the total mesh) 
16. Sort nodes according to their fitness values 
17. Apply the adaptive clearing operator 
18. Select P best nodes to build the initial mesh for the 

next iteration 
19. If needed, randomly generate new nodes so as to 

complete the initial mesh for the next iteration 
20. untilstop criterion (C) is met 
21.end 

1. begin 
2. Sort the population Pp in decreasing order of their 

fitness values 
3. for i = 0 to S - 1 
4. if (Fitness(Pp[i]) ≠ 0) 
5. nbWinners = 1 
6. Create a new niche, being Pp[i] its master 
7. for j = i + 1 to S - 1 
8. if (Fitness(Pp[j]) ≠ 0 and  
 Distance (Pp[i], Pp[j]) <σ) 
9. if (nbWinners < κ) 
10. nbWinners = nbWinners + 1 
11. Insert individual Pp[j] in the current niche 
12. else 
13. Fitness(Pp[j]) = 0 
14. end if 
15. end if 
16. end for 
17. end if 
18. end for 
19.end 



operator is executed. In VMO, it involves the whole mesh at 
a time (step 17 in Fig. 1), but as shown in Fig. 3, this 
operator separately affects the niches discovered in the 
search process by NC-VMO. The rationale behind this 
algorithmic choice is given in Section VIII once the need 
clearly emerged after studying VMO’s performance on 
different multimodal problems. 

 
Figure 3.  NC-VMO’s pseudo code. 

VI. ALGORITHMIC COMPLEXITY 
In this section, a time complexity analysis for both VMO 

and NC-VMO is provided. 

A. VMO’s time complexity 
Let n be the number of individuals in the population (in 

VMO, the P nodes in the initial mesh). The computational 
time required by VMO is shown in (2), where k and M are 
respectively the number of mesh nodes in the neighborhood 
and the dimension (number of variables) of the problem. 
Besides, t denotes the number of iterations of the algorithm. 

𝑡𝑖𝑚𝑒!"# 𝑛 =   𝑡 𝑘𝑛! +𝑀 3𝑛/2 + 3𝑛 − 1 + 3𝑛 −
2 +⋯+ 1 + 2𝑛 (2) 

Consequently, the time complexity for VMO is O(tn2), 
since t is a dominant coefficient, but neither k nor M.  

B. NC-VMO’s time complexity 
Equation (3) describes the approximate time required by 

NC-VMO. Notice the introduction of q, which is the number 
of peaks maintained during the search. Also, qn [4] 
represents the cost of applying the clearing-based niche 
formation technique. 

𝑡𝑖𝑚𝑒!"!!"# 𝑛 =   𝑡 𝑘𝑛! + 𝑞𝑛 + 𝑞𝑀 3𝑛/2 + 𝑛/𝑞 −
1 + 𝑛/𝑞 − 2 +⋯+ 1 + 2𝑛 (3) 

Despite the time required increases, the resulting global 
cost of NC-VMO is still in the same order of O(tn2).  

VII. EXPERIMENTAL FRAMEWORK 

A. Test functions 
Among the large set of benchmark multimodal problems, 

the ones known in the literature as F3 and F4 are used as test 
functions in this work for two practical reasons. First, 
because among those problems available to study the 
behavior of niching methods, these two maximization 
problems are often used to evaluate the method’s niche 
preservation ability rather than just assessing its search 
capabilities. The other reason is the need for comparison 
with previously published results on the behavior of other 
niching approaches, including those that applied the clearing 
niching procedure itself. 

 
Figure 4.  Test functions. 

Equation (4) describes the analytical form of F3; it is 
graphically represented in Fig. 4a as well. This is a periodic 
function with peaks of equal size and interval. 

 𝐹3 𝑥 = 𝑠𝑖𝑛! 5𝜋 𝑥!.!" − 0.05  (4) 

1. begin 
2. Randomly generate P nodes for the initial mesh 

(3P ≤ T)  
3. Select the global best in the initial mesh 
4. repeat 
5. for each node in the initial mesh do 
6. Find its closest k nodes by their spatial locations 
7. Select the best neighbor as per the fitness values 
8. if current node is not the local best then 
9. Generate a new node toward the local best 
10. end if 
11. end for 
12. for each node in initial mesh, but the global best do 
13. Generate a new node toward the global best 
14. end for 
15. Generate nodes from those in the mesh frontier 

(up to T nodes in the total mesh) 
16. Apply the clearing-based niche formation technique 
17. for each identified niche do 
18. Sort nodes according to their fitness values 
19. Apply the adaptive clearing operator 
20. end for 
21. Select P best nodes to build the initial mesh for the 

next iteration 
22. If needed, randomly generate new nodes so as to 

complete the initial mesh for the next iteration 
23. until stop criterion (C) is met 
24.end 

a. F3 

 
b. F4 

 



Function F3 is defined for x∈ [0, 1] and its five peaks are 
located at x = 0.080, 0.247, 0.451, 0.681 and 0.934, all with 
the same height of 1. 

Equation (5) displays the analytical form of F4 while its 
graphical representation is shown in Fig. 4b. This is a 
periodic function having peaks of unequal size and width. 

 𝐹4 𝑥 = 𝑒!! !"#! !!!.!
!.!

!

𝑠𝑖𝑛! 5𝜋 𝑥!.!" − 0.05  (5) 

Function F4 is defined for x∈ [0, 1] too, and it has also 
five peaks at x = 0.080, 0.247, 0.451, 0.681 and 0.934, but 
they have different values of height, being approximately 
1.000, 0.948, 0.770, 0.503 and 0.250 respectively. 

B. Performance criteria 
The following criteria have been used for assessing the 

performance of niching methods: 
• maximum peaks ratio (MPR): indicates both the 

quality and the number of the optima identified. It is 
defined as the sum of the fitness of the optima 
reached by the niching technique divided by the sum 
of the fitness of the actual optima in the search 
space: 

 𝑀𝑃𝑅 = 𝐹!
!
!!! 𝑓!!

!!!  (6) 

where Fi is the fitness of the found optimum i and fj 
is the fitness of the actual optimum j. The variable q 
represents the number of identified peaks, which 
contain the discovered optima, while r is the number 
of real optima. An optimum is considered to be 
detected if its fitness value is at least 80% of the real 
one and the optimum is within a niche radius of the 
actual optimum. When an optimum is not detected, 
its fitness value is set to 0. Hence, the maximum 
value for the MPR is 1, when all optima are perfectly 
reached. [8, 16] 

• effective number of peaks maintained (ENPM): gives 
a measure of the ability of a niching method to locate 
and maintain individuals at the fitness peaks for 
extended periods of time. This is defined as a 
function of the number of evaluations after which 
stable values for the peaks found are reached. [8, 22] 

• chi-square-like deviation: measures the deviation 
between the actual population distribution and an 
ideal proportionally populated distribution (𝜇! ,𝜎!) in 
all the niches [7]. Thus, this performance indicator 
illustrates the ability of the method to proportionally 
populate the niches of the search space; the smaller 
the value, the better the method:  

 𝑐ℎ𝑖 − 𝑠𝑞𝑢𝑎𝑟𝑒 − 𝑙𝑖𝑘𝑒   =    𝑛! − 𝜇! /𝜎!!
!!!!

!!!  (7) 

where, for the peak niches, 

 𝜇! = 𝑛𝑓! 𝑓!
!
!!!      and    𝜎! = 𝜇! 1 − 𝜇!/𝑛  (8) 

and for the nonpeak niches: 

 𝜇!!! = 0     and    𝜎!!! = 𝜎!!
!
!!!  (9) 

n is the population size while fi denotes the fitness 
value of the peak i. Besides, ni denotes the 
experimental number of individuals in a niche i, 𝜇! 
corresponds to the expected ideal number and 𝜎! is 
the standard deviation of the number of individuals 
in the ideal distribution. [8] 

C. Parametric configurations for VMO and NC-VMO 
VMO’s parameters are set as described in [6], except for 

the stop criterion. Thus, the initial population size (P) is set 
to 50 and the maximum number of nodes (T) after the 
expansion is 175, while for defining the neighborhoods k = 3 
is used. To guarantee a fair comparison baseline with results 
reported by other methods, a maximum number of iterations 
(C = 200) is set as the stop condition. Each method is run 10 
times for each test problem. 

As an adapted VMO model, the new NC-VMO method 
uses the same four parameters P, T, k and C. Thus, in the 
case of NC-VMO they are also set as detailed above. In 
addition, for the clearing-based niche formation technique 
applied in NC-VMO, it is used κ = 1 as the niche capacity, 
since it is recommended by Pétrowski in [5] for the best 
performance. Besides, from results presented in [4], the 
number of winners (nbWinners) in a subpopulation is also set 
to 1. Hence, the masters receive the full resources of their 
corresponding niches. From the literature and due to 
topological reasons, σ = 0.1 is used as the niche radius for 
test problems F3 and F4. 

D. Baseline niching methods 
In order to compare NC-VMO’s performance to some 

outstanding GA’s niching techniques, we refer to the results 
reported in [8] regarding the approximation of the same 
functions F3 and F4 by a few niching methods, including 
classical approaches. Such techniques are: the fitness sharing 
coupled with the matching sort algorithm (sharing+sort) [8], 
the clearing procedure, the deterministic crowding (DC) [31] 
and the restricted tournament selection (RTS) [17]. The 
results shown in [3] about the approximation of both test 
functions by the genetic algorithm with sharing and fuzzy 
clustering (GASH-FC) are also used for benchmarking. 

VIII. VMO AND NC-VMO ON MULTIMODAL PROBLEMS 
Average results over 10 independent runs of VMO’s 

number of peaks found are reported in Fig. 5. Notice that 
VMO is capable of locating several of the desired peaks. It 
reached an average number of 4.3 peaks from those 
belonging to F3 and 4.5 in the case of F4. However, it is 
unable such a peak discovery rate for a long time. A 
preliminary analysis on the effect of the adaptive clearing 
operator reveals the reason of such inefficacy. 



 

 
Figure 5.  Mean number of peaks found by VMO. 

As explained in Section III.B, as part of the selection 
process of the individuals surviving from the current iteration 
to the next, this operator eliminates the worst among those 
closer (in fitness) than a dynamic threshold. In order to 
illustrate the negative effect of such operator on the search of 
multiple optima (peaks), Table I shows the average number 
of nodes (in the Nodes column) located close to every peak 
at the end of the current iteration, as well as the average 
number of such nodes that get by the contraction process so 
as to be part of the initial mesh in the next iteration (in the 
Survivors column). 

TABLE I.  AVERAGE NUMBER OF NODES SURVIVING FROM THE 
CURRENT ITERATION TO THE NEXT 

Peak 
F3 F4 

Nodes Survivors Nodes Survivors 

P1 13.5 0 137.8 50 
P2 50.1 15 12 0 
P3 49.1 15 12.6 0 
P4 43.3 15 5.6 0 
P5 14.1 5 4.1 0 

There is an obvious partial or total loss of nodes that 
approximate certain peaks. Thus, for some peaks the search 
is completely restarted whenever the population is renewed. 
This difficulty is caused by VMO’s adaptive clearing 
operator. For instance, in the case of F3none of the nodes in 
the surroundings of the first peak survive. This is because 
they have the worst fitness values among the 175 individuals 
in the population. Thus, sorted by their fitness, such nodes 

will never be selected to be part of the mesh in the next 
iteration. 

The consequences of the adaptive clearing operator are 
more drastic and evident on functions with peaks of unequal 
sizes, like F4. Note that all survivor nodes correspond to a 
single peak. The answer is in the height of such peak. As it 
represents the global optimum, the whole search process is 
focused on it, by approximating such solution by the average 
number of 137.8 nodes from the 175 in the total mesh. In 
addition, after sorting the nodes according to their fitness and 
removing the ones with inferior fitness among those closer 
than certain threshold, all the nodes that survive to the next 
iteration belong to the same best peak and the remaining 
ones have absolutely not a chance to continue existing. 

To avoid this undesirable effect brought about by the 
adaptive clearing operator while preserving its power to 
foment diversity in the search, a new strategy is devised to 
deal with multimodality. As shown in Fig. 3, in the new 
algorithm NC-VMO, after the niche formation procedure is 
applied, the adaptive clearing operator independently comes 
into action in every niche found. It guarantees that at least 
the masters of all niches will be spared for the next iteration 
and therefore, all peaks are likely to be reached. 

 
Figure 6.  Mean number of peaks found by NC-VMO. 

Consequently, as portrayed in Fig. 6, NC-VMO exhibits 
a great capacity to find and maintain all the desired peaks. It 
should also be noted its ability to rapidly converge to a 
maintained solution, as evidenced by the ENPM saturation 
values reached at the 3rdand 1stiterations for functions F3 and 
F4, respectively. 

According to the fact that VMO is incapable of 
maintaining the reached peaks for extended periods of time, 

a. on F3 

 
b. on F4 

 a. on F3 

 
b. on F4 

 



it is not possible to talk about positive values for ENPM in 
this particular case. Then, as shown in Table II, the proposed 
method NC-VMO improves VMO regarding both the 
number of peaks maintained and the quality of the solutions. 
In addition, this new approach is also competitive with other 
niching methods from the literature. Based on the values 
reported for such techniques (see Table II), NC-VMO 
slightly outperforms both DC and sharing+sort. Also, 
together for F3 and F4, it behaves extremely close to the 
remaining GA’s niching methods included in this study 
(clearing procedure, RTS and GASH-FC). 

TABLE II.  EFFECTIVE NUMBER OF PEAKS MAINTAINED (ENPM) AND 
MAXIMUM PEAKS RATIO (MPR) 

Method F3 F4 

 MPR ENPM chi-square MPR ENPM chi-square 

clearing 1 5 0.293 1 5 1.448 
RTS 1 5 2.839 1 5 6.516 
GASH-FC 1 5  1 5  
NC-VMO 0.999 5 0.024 0.999 5 0.060 
sharing+sort 0.999 5 1.287 0.984 4.8 2.041 
DC 1 5 5.683 0.778 4 9.582 
VMO 0.837 0 0.043 0.896 0 0.106 

The prior analysis is based on only the values of MPR 
and ENPM. However, a complementary evaluation on the 
values of chi-square-like deviation, also reported in Table II, 
exposes that VMO is superior to all the baseline methods 
concerning the capability for proportionally populate the 
desired niches. It might suggest the formation of stable 
subpopulations during the search. However, it has been 
proven that VMO is not able to create stable niches by losing 
some peaks from the current iteration to the next. 

In addition, the values of the chi-square-like deviation 
corresponding to NC-VMO confirm its supremacy over 
VMO. The very low values of such performance statistic in 
this case illustrates that, also with results of MPR and ENPM 
very close to the best methods in comparison, NC-VMO is 
more stable than all the remaining methods regarding how 
capable they are on searching all the wanted optima in a 
parallel and proportional way. The most proportional the 
method populate the niches regarding the expected number 
of individuals in every niche, the most possible is to reach all 
the peaks.  

Finally, it is interesting to dwell on the impact of 
reducing the population size for NC-VMO. As illustrated in 
Table III, the method still performs well when there are just 
20 or even 10 nodes in the initial mesh. For a comparison 
with the baseline methods included in this study, it is worth 
mentioning that their population size is 100 individuals, 
except for GASH-FC that works with 150 chromosomes. It 
can be concluded that NC-VMO is still competitive with a 
smaller number of individuals; that is it has advantage with 
less population. 

 
 

TABLE III.  EXPERIMENTAL RESULTS OF NC-VMO FOR DIFFERENT 
POPULATION (MESH) SIZES 

Mesh size F3 F4 
P T MPR ENPM MPR ENPM 

50 175 0.999 5 0.999 5 
30 105 0.999 5 0.999 5 
20 70 0.998 5 0.999 5 
16 56 0.998 5 0.998 5 
10 35 0.994 5 0.995 5 

IX. CONCLUSIONS AND FUTURE WORK 
The performance evaluation of Variable Mesh 

Optimization on multimodal functions reveals that this 
metaheuristic holds promise for dealing with such kind of 
problems. VMO is capable of identifying a variety of local 
optima in the search space but it is not able to maintain them 
over time. As previously discussed, this is owing to the 
detrimental effect caused by its adaptive clearing operator, 
which is applied as part of its exploitation strategy. 

To mitigate the difficulty described above, such strategy 
is modified by applying a clearing-based niche formation 
technique and the VMO’s adaptive clearing operator, both 
working in a synergetic way. This is one of the first attempts 
to improve VMO’s behavior in presence of multimodality. 
The resulting method, baptized as Niche-Clearing-based 
Variable Mesh Optimization, has proved its ability to find 
and retain multiple peaks as desired. Hybridizing VMO with 
a niching technique resulted indeed in an effective method to 
tackle multimodality. 

As the applied clearing-based niche formation procedure 
relies on the niche radius, which requires a priori knowledge 
of the problem at hand, it is necessary to use other niching 
techniques that do not exhibit this drawback. Consequently, 
although the basic clearing niching procedure is successfully 
used in this study to demonstrate VMO’s capacity to deal 
with multimodal problems, hybridization with other niching 
methods should improve the results achieved. Moreover, we 
ought to extend VMO’s multimodal analysis to a broader set 
of problems that, for instance, have non-equidistant peaks. 
The niche radius could be, for example, dynamically updated 
as per the scheme proposed in [3]. 
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