
Malaysian Journal of Computer Science, Vol. 17 No. 1, June 2004, pp. 13-23

13

DCT BASED TEXTURE CLASSIFICATION USING A SOFT COMPUTING APPROACH

Golam Sorwar

School of Multimedia and Information Technology
Southern Cross University
Coffs Harbour, NSW 2457

Australia
email: gsorwar@scu.edu.au

Ajith Abraham
Computer Science Department

Oklahoma State University (Tulsa)
Tulsa, OK 74106

United State of America
email: ajith.abraham@ieee.org

ABSTRACT

Classification of texture patterns is one of the most important problems in pattern recognition. In this paper, we
present a classification method based on the Discrete Cosine Transform (DCT) coefficients of texture images. As
DCT works on gray level images, the color scheme of each image is transformed into gray levels. For classifying
the images using DCT, we used two popular soft computing techniques namely neurocomputing and neuro-fuzzy
computing. We used a feedforward neural network trained using the backpropagation learning algorithm and an
evolving fuzzy neural network to classify the textures. The soft computing models were trained using 80% of the
texture data and the remaining was used for testing and validation purposes. A performance comparison was made
among the soft computing models for the texture classification problem. We also analyzed the effects of prolonged
training of the neural networks. It is observed that the proposed neuro-fuzzy model performed better than the
neural network.

Keywords: Texture classification, DCT, Neurocomputing, Neuro-Fuzzy, soft computing

1.0 INTRODUCTION

Texture as a primitive visual cue has been studied for a long time. Various techniques have been developed for
texture segmentation, texture classification and texture synthesis. Although texture analysis has a long history, its
applications to real image data have been limited to-date. An important and emerging application where texture
analysis can make a significant contribution is the area of content-based retrieval in large image and video
databases. Using texture as a visual feature, one can query a database to retrieve similar patterns. Texture
classification and segmentation schemes are very important in answering such queries.

Statistical approaches are used to extract texture features. For the analysis of a texture image, it requires large
storage space and a lot of computation time to calculate the matrix of features such as SGLDM (Spatial Gray Level
Dependence Matrix), NGLDM (Neighboring Gray Level Dependence Matrix) [1] etc. are required. In spite of the
large size of each matrix, a set of their scalar feature calculated from the matrix is not efficient to represent the
characteristics of image content.

In general, neighboring pixels within an image tend to be highly correlated. As such, it is desired to use an
invertible transform to concentrate randomness into fewer, decorrelated parameters. The Discrete Cosine Transform
(DCT) has been shown to be near optimal for a large class of images in energy concentration and decorrelating. It
has been adopted in the JPEG and MPEG coding standards [2, 3]. The DCT decomposes the signal into underlying
spatial frequencies, which then allow further processing techniques to reduce the precision of the DCT coefficients
consistent with the Human Visual System (HVS) model. The DCT coefficients of an image can be used as a new
feature, which has the ability to represent the regularity, complexity and some texture features of an image and can
be directly applied to image data in the compressed domain [4]. This may be a way to solve the large storage space
problem and the computational complexity of the existing methods.

Soft computing was first proposed by Zadeh [5] to construct new generation computationally intelligent hybrid
systems consisting of neural networks, fuzzy inference systems, approximate reasoning and derivative free
optimisation techniques. It is well known that the intelligent systems, which can provide human like expertise such
as domain knowledge, uncertain reasoning, and adaptation to a noisy and time varying environment, are important
in tackling practical computing problems. In contrast with conventional artificial intelligence techniques which only
deal with precision, certainty and rigor, the guiding principle of hybrid systems is to exploit tolerance for

Sorwar and Abraham

14

imprecision, uncertainty, low solution costs, robustness, partial truth to achieve tractability, and better rapport with
reality.

In our research, we used an artificial neural network trained using the backpropagation algorithm and an evolving
fuzzy neural network (neuro-fuzzy system) [6] for classifying the texture data [7]. The soft computing models were
evaluated based on their classification efficiency of the different texture data sets. We also evaluated the
performance of the neural network by increasing the training epochs. Some theoretical background about the DCT
transform is presented in Section 2 followed by texture feature extraction in Section 3. Section 4 and 5 present some
basic aspects of neural networks and neuro-fuzzy systems followed by the experiment set up in Section 6. Some
discussions and conclusions are provided towards the end.

2.0 BLOCK DCT-BASED TRANSFORM

Most existing approaches in texture feature extraction use statistical methods. For the analysis of a texture image,
large storage space and a lot of computational time to calculate the matrix of features is required. For solving the
problems, some researchers proposed to use DCT [4] for texture representation. The block diagram of the proposed
DCT model is shown in Fig. 1.

Fig. 1: The block diagram of the texture feature extraction method

For the DCT transform, we convert an RGB image into a gray level image. For spatial localization, we then use the
block-based DCT transformation. Each image is divided into N*N sized sub-blocks. The two dimensional DCT can
be written in terms of pixel values f(i, j) for i,j = 0,1,…,N-1 and the frequency-domain transform coefficients F(u,v):

∑∑
−

=

−

=

=
1

0

1

0
),()()(

2
1),(

N

i

N

j
jifvcuc

N
vuF

 +

⋅

 +

×
N

vj
N

ui
2

)12(cos
2

)12(cos ππ
 (1)

for u,v =0,1,…,N-1
where

=

1

2
1

)(xc

The inverse DCT transform is given by

∑∑
−

=

−

=

=
1

0

1

0

),()()(),(
N

u

N

v

vuFvcucjif

 +

 +

×
N

vj
N

ui
2

)12(cos.
2

)12(cos ππ
 (2)

 for x=0

otherwise

Gray Level
Conversion

Block-

Texture Feature
Vector

Texture
Feature Vector

DCT Based Texture Classification Using a Soft Computing Approach

15

for i,j =0.1,…, N-1.

3.0 TEXTURE FEATURE VECTOR EXTRACTION

For efficient texture feature extraction, we use some DCT coefficients in the compressed domain as the feature
vectors. Each sub block contains one DC coefficients and other AC coefficients as shown in Fig. 2.

 (a) (b) (c)
Fig. 2: (a) DCT Basis Pattern (b) Vector element from frequency components (c) Vector elements from

directional information

Since it is well known that the HVS is less sensitive to errors for high frequency coefficients than it is for the lower
frequency components of DCT, we extract the feature set of 9 vector components in which the first one is DC
coefficient of each sub-block which represents the average energy or intensity of the block and 8 other AC
coefficients which represent some different pattern of image variation and directional information of the texture; for
example, the coefficients of the most upper region and those of the most left region in a DCT transform domain
represent some vertical and horizontal edge information, respectively in Fig. 2(c).

4.0 ARTIFICIAL NEURAL NETWORK (ANN)

Neural networks are computer algorithms inspired by the way information is processed in the nervous system [8].
An important difference between neural networks and other AI techniques is their ability to learn. The network
“learns” by adjusting the interconnections (called weights) between layers. When the network is adequately trained,
it is able to generalise relevant output for a set of input data. A valuable property of neural networks is that of
generalisation, whereby a trained neural network is able to provide a correct matching in the form of output data for
a set of previously unseen input data. Learning typically occurs by example through training, where the training
algorithm iteratively adjusts the connection weights (synapses). Backpropagation (BP) is one of the most famous
training algorithms for multilayer perceptrons. BP is a gradient descent technique to minimise the error E for a
particular training pattern. For adjusting the weight wij from the i-th input unit to the jth output, in the batched mode

variant the descent is based on the gradient E∇ (
ijδw

δE
) for the total training set:

)1(n∆wα*
δw
δEε*(n)∆w ij

ij
ij −+−= (3)

The gradient gives the direction of error E. The parameters ε and α are the learning rate and momentum respectively
[9].

5.0 NEURO-FUZZY SYSTEMS

A neuro-fuzzy system [10] is defined as a combination of ANNs and Fuzzy Inference Systems (FIS) [11] in such a
way that neural network learning algorithms are used to determine the parameters of FIS. An even more important
aspect is that the system should always be interpretable in terms of fuzzy if-then rules, because it is based on the
fuzzy system reflecting vague knowledge. We used an Evolving Fuzzy Neural Network (EFuNN) implementing a

DC

Sorwar and Abraham

16

Mamdani [12] type FIS and all nodes were created during learning. EFuNN has a five-layer structure as illustrated
in Fig. 3. Fig. 4 illustrates a Mamdani FIS combining 2 fuzzy rules using the max-min method [12]. According to
the Mamdani FIS, the rule antecedents and consequents are defined by fuzzy sets and have the following structure:

1111 CzthenBisyandAisxif = (4)

where A1 and B1 are the fuzzy sets representing input variables and C1 is the fuzzy set representing the output fuzzy
set. In EFuNN, the input layer is followed by the second layer of nodes representing fuzzy quantification of each
input variable space. Each input variable is represented here by a group of spatially arranged neurons to represent a
fuzzy quantization of this variable. Different membership functions (MF) can be attached to these neurons
(triangular, Gaussian, etc.). The nodes representing membership functions can be modified during learning. New
neurons can evolve in this layer if, for a given input vector, the corresponding variable value does not belong to any
of the existing MF to a degree greater than a membership threshold. The third layer contains rule nodes that evolve
through hybrid supervised/unsupervised learning. The rule nodes represent prototypes of input-output data
associations, graphically represented as an association of hyper-spheres from the fuzzy input and fuzzy output
spaces. Each rule node, e.g. rj, represents an association between a hyper-sphere from the fuzzy input space and a
hyper-sphere from the fuzzy output space; W1(rj) connection weights representing the co-ordinates of the center of
the sphere in the fuzzy input space, and W2 (rj) – the co-ordinates in the fuzzy output space. The radius of an input
hyper-sphere of a rule node is defined as (1- Sthr), where Sthr is the sensitivity threshold parameter defining the
minimum activation of a rule node (e.g., r1, previously evolved to represent a data point (Xd1,Yd1)) to an input vector
(e.g., (Xd2,Yd2)) in order for the new input vector to be associated with this rule node. Two pairs of fuzzy input-
output data vectors d1=(Xd1,Yd1) and d2=(Xd2,Yd2) will be allocated to the first rule node r1 if they fall into the r1 input
sphere and in the r1 output sphere, i.e. the local normalised fuzzy difference between Xd1 and Xd2 is smaller than the
radius r and the local normalised fuzzy difference between Yd1 and Yd2 is smaller than an error threshold Errthr. The
local normalised fuzzy difference between two fuzzy membership vectors d1f and d2f that represent the membership
degrees to which two real values d1 and d2 data belong to the pre-defined MF, are calculated as

D(d1f,d2f) = sum(abs(d1f - d2f))/sum(d1f + d2f) (5)

Fig. 3: Architecture of EFuNN

DCT Based Texture Classification Using a Soft Computing Approach

17

Fig. 4: Mamdani fuzzy inference system

If data example d1 = (Xd1,Yd1), where Xd1 and Xd2 are correspondingly the input and the output fuzzy membership

degree vectors, and the data example is associated with a rule node r1 with a centre 1
1r , then a new data point

d2=(Xd2,Yd2), will also be associated with this rule node through the process of associating (learning) new data points
to a rule node [6]. The centres of this node is hyper-spheres adjust in the fuzzy input space depending on a learning
rate lr1, and in the fuzzy output space depending on a learning rate lr2, on the two data points d1 and d2. The

adjustment of the center 1
1r to its new position 2

1r can be represented mathematically by the change in the

connection weights of the rule node r1 from W1(1
1r) and W2(1

1r) to W1(2
1r) and W2(2

1r) according to the following
vector operations:

W2 (2
1r) = W2(1

1r) + lr2 . Err(Yd1,Yd2) . A1(1
1r) (6)

W1(2
1r)=W1 (1

1r) + lr1 . Ds (Xd1, Xd2) (7)
where Err(Yd1,Yd2)= Ds(Yd1,Yd2)=Yd1-Yd2 is the signed value rather than the absolute value of the fuzzy difference

vector; A1(1
1r) is the activation of the rule node 1

1r for the input vector Xd2.

While the connection weights from W1 and W2 capture spatial characteristics of the learned data (centres of hyper-
spheres), the temporal layer of connection weights W3 captures temporal dependencies between consecutive data
examples. If the winning rule node at the moment (t-1) (to which the input data vector at the moment (t-1) was
associated) was r1 = inda1(t-1), and the winning node at the moment t is r2 = inda1(t), then a link between the two
nodes is established as follows:

W3(r1,r2) (t) = W3(r1,r2) (t-1) + lr3. A1(r1) (t-1) A1(r2)) (t), (8)

where A1(r) (t) denotes the activation of a rule node r at a time moment (t); lr3 defines the degree to which the
EFuNN associates links between rules (clusters, prototypes) that include consecutive data examples (if lr3 = 0, no
temporal associations are learned in an EFuNN structure) [6].

The learned temporal associations can be used to support the activation of rule nodes based on temporal, pattern
similarity. Here, temporal dependencies are learned through establishing structural links. The ratio spatial-
similarity/temporal-correlation can be balanced for different applications through two parameters Ss and Tc such that
the activation of a rule node r for a new data example dnew is defined as the following vector operations:

 A1 (r) = f (Ss . D(r, dnew) + Tc .W3(r (t-1) , r)) (9)

where f is the activation function of the rule node r, D(r, dnew) is the normalised fuzzy distance value and r (t-1) is the
winning neuron at the previous time moment.

The fourth layer of neurons represents fuzzy quantification for the output variables. The fifth layer represents the
real values for the output variables.

EFuNN evolving algorithm is adapted from [6] and is formulated as follows:

1. Initialise an EFuNN structure with a maximum number of neurons and zero value connections. If initially
there are no rule nodes connected to the fuzzy input and fuzzy output neurons, then create the first node rj=1

Sorwar and Abraham

18

to represent the first data example EX= (Xd1, Yd1) and set its input W1 (rj) and output W2 (rj) connection
weights as follows:
<Create a new rule node rj> to represent a data sample EX: W1 (rj)=EX: W2 (rj)= TE, where TE is the fuzzy
output vector for the (fuzzy) example EX.

2. While <there are data examples> Do
Enter the current, example (Xdi, Ydi), EX being the fuzzy input vector (the vector of the degrees to which the
input values belong to the input membership functions). If there are new variables that appear in this
example and have not been used in previous examples, create new input and/or output nodes with their
corresponding membership functions.

3. Find the normalized fuzzy similarity between the new example EX (fuzzy input vector) and the already
stored patterns in the case nodes rj= r1, r2,….,rn
D(EX,rj) = sum (abs (EX - W1(rj))) / sum (W1(rj) + EX)

4. Find the activation A1 (rj) of the rule nodes rj= r1, r2,….,rn. Here a radial basis activation (radbas) function,
or a saturated linear (satlin) one, can be used, i.e.
A1 (rj) = radbas (Ss D(EX, rj – Tc W3), or A1 (rj) = satlin (1- Ss D(EX, rj + Tc W3)).

5. Update the pruning parameter values for the rule nodes, e.g. age, average activation as pre-defined.
6. Find m case nodes rj with an activation value A1 (rj) above a predefined sensitivity threshold Sthr.
7. From the m case nodes, find one rule node inda1 that has the maximum activation value maxa1.
8. If maxa1 < Sthr, then, <create a new rule node> using the procedure from step 1.

Else
9. Propagate the activation of the chosen set of m rule nodes (rj1,…,rjm) to the fuzzy output neurons: A2 = satlin

(A1(rj1,…,rjm) . W2)
10. Calculate the fuzzy output error vector: Err=A2 -TE
11. If (D(A2,TE) > Errthr) <create a new rule node> using the procedure from step 1.
12. Update (a) the input, and (b) the output of the m-1 rule nodes k = 2 : jm in the case that a new node was

created, or m rule nodes k=j1 : jm, in the case that no new rule was created:
• Ds(EX-W1(rk)) = EX - W1(rk); W1(rk) = W1(rk) + lr1 .Ds(EX-W1(rk)), where lr1 is the learning rate for

the first layer;
• A2 (rk) = satlin (W2(rk).A1(rk)); Err(rk) = TE-A2(rk);
• W2(rk) = W2(rk) + lr2 . Err (rk) .A1(rk) , where lr2 is the learning rate for the second layer.

13. Prune rule nodes rj and their connections that satisfy the following fuzzy pruning rule to a pre-defined level
representing the current need of pruning:
IF (a rule node rj is OLD) and (average activation A1av(rj) is LOW) and (the density of the neighboring area
of neurons is HIGH or MODERATE) (i.e. there are other prototypical nodes that overlap with j in the input-
output space; this condition applies only for some strategies of inserting rule nodes as explained below)
THEN the probability of pruning node (rj) is HIGH. The above pruning rule is fuzzy and it requires that the
fuzzy concepts as OLD, HIGH, etc. be predefined.

14. Aggregate rule nodes, if necessary, into a smaller number of nodes. A C-means clustering algorithm can be
used for this purpose.

15. End of the while loop and the algorithm.

The rules that represent the rule nodes need to be aggregated in clusters of rules. The degree of aggregation can
vary depending on the level of granularity needed. At any time (phase) of the evolving (learning) process, fuzzy, or
exact rules can be inserted and extracted [13]. Insertion of fuzzy rules is achieved through setting a new rule node
for each new rule, such that the connection weights W1 and W2 of the rule node represent the fuzzy or the exact rule.
The process of rule extraction can be performed as aggregation of several rule nodes into larger hyper-spheres. For
the aggregation of two-rule nodes r1 and r2, the following aggregation rule is used:
 If (D(W1(r1),W1(r2)) < = Thr1) and (D(W2(r1),W2(r2)) <= Thr2) (10)

then aggregate r1 and r2 into ragg and calculate the centres of the new rule node as:
 W1(ragg) = average (W1(r1),W1(r2)), W2(ragg) = average (W2(r1),W2(r2)) (11)

Here the geometrical center between two points in a fuzzy problem space is calculated with the use of an average
vector operation over the two fuzzy vectors. This is based on a presumed piece-wise linear function between two
points from the defined through the parameters Sthr and Errthr input and output fuzzy hyper-spheres.

DCT Based Texture Classification Using a Soft Computing Approach

19

6.0 EXPERIMENT SETUP AND RESULTS

6.1 Training and Testing Data

In our research, we attempted to classify 3 different types of textures using soft computing techniques. We used
DCT coefficients to represent the different textures. Each texture image was represented by 324 DCT coefficients.
Our texture database consisted of 240 different textures which we manually classified into three different classes
(brick, metal and rural). Some sample textures are illustrated in Fig. 5. 192 texture patterns were used for training
the soft computing models and the remaining 48 texture patterns were used for testing purposes.

While the proposed neuro-fuzzy model was capable of determining the architecture automatically, we had to do
some initial experiments to determine the architecture (number of hidden neurons and number of layers) of the
neural network. After a trial and error approach we found that the neural network was giving good generalisation
performance when we had 2 hidden layers with 90 neurons each. In the following sections we report the details of
our experimentations with neural networks and neuro-fuzzy models.

(a) Brick

(b) Metal

(c) Rural

Fig. 5: Some sample texture patterns from the database

6.2 EFuNN Training

We used 4 membership functions for each input variable and the following evolving parameters: sensitivity
threshold Sthr=0.99, error threshold Errthr=0.001. EFuNN training created 162 rule nodes as shown in Fig. 6.
Empirical results are reported in Tables 1 and 2.

Sorwar and Abraham

20

Fig. 6: Learned rule nodes by EFuNN learning

Table 1: Training performance of Soft computing models

EFuNN

ANN

(5000 ep)

ANN

(15000 ep)

ANN

(20000 ep)

ANN

(40,000 ep)

RMSE (Training) 0.2e-003 3.9e-003 1.4e-004 9.4e-005 8.5e-005

Giga Flops 152 187860 751100 939000 1502200

Table 2: Test results and performance comparison of texture classification

 EFuNN ANN
(5000 ep)

ANN
(15000 ep)

ANN
(20000 ep)

ANN
(40,000 ep)

A1 15 14 14 12 12 Brick
(16 Nos) A2 1 2 2 4 4

B1 16 13 14 15 15 Metal
(16 Nos) B2 0 3 2 1 1

C1 11 12 11 14 Rural
(16 Nos) C2 5 4 5 2 2

X = (A1 + B1 + C1) 42 39 39 41 41 Total
(48 Nos) Y = (A2 + B2 + C2) 6 9 9 7 7

*Reliability of classifcation 88 % 81.25 % 81.25 % 85.4 % 85.4 %

*Reliability = 100
48
X

×

6.3 ANN Training

We used a neural network trained using backpropagation algorithm. We used 1 input layer, 2 hidden layers and an
output layer [327-90-90-3]. Input layer consisted of 327 neurons corresponding to the input variables. The first and
second hidden layer consisted of 90 neurons each with a tanh-sigmoidal activation function. The initial learning rate
and momentum were set as 0.05 and 0.1 respectively. Training errors (RMSE) and performance achieved after
5000, 15,000, 20,000 and 40,000 epochs are reported in Tables 1 and 2. Approximate computational load in Giga
Flops is reported in Table 1 and is graphically depicted in Fig. 7.

DCT Based Texture Classification Using a Soft Computing Approach

21

6.4 Test Results

Table 2 summarises the comparative performance of EFuNN and ANN. The best classification was obtained using
EFuNN (88%) followed by neural networks (85.4 %).

Fig. 7: Computational load of soft computing models

7.0 CONCLUSIONS

In this paper, we attempted to classify 3 different types of textures using artificial neural networks and Evolving
Fuzzy Neural Network (EFuNN). For a texture feature we considered the DCT coefficient, which does not require
additional complex computation for feature extraction. As the high frequency coefficient is less sensitive to human
visual systems, we constructed a feature matrix consisting of the first few coefficients of each block. EFuNN
outperformed the neural network with the best classification (88%). As depicted in Table 1, EFuNN is less
computationally expensive as compared to neural networks. EFuNN adopts a one-pass (one epoch) training
technique, which is highly suitable for online learning. Hence online training can incorporate further knowledge
very easily. We also studied the generalisation performance of BP training when the training epochs were increased
from 5000 epochs to 40,000 epochs. When the number of epochs were increased, it was interesting to note the
continuous reduction of the training error (RMSE) but the generalisation error (classification accuracy) however
tends to settle after 20,000 epochs. Compared to ANN, an important advantage of neuro-fuzzy models is their
reasoning ability (if-then rules) of any particular state [13].

The proposed prediction models based on soft computing on the other hand are easy to implement and produce
desirable mapping functions by training on the given data set. Moreover, the considered connectionist models are
very robust, capable of handling noisy and approximate data and might be more reliable in worse situations.
Choosing suitable parameters for the soft computing models is more or less a trial and error approach. Optimal
results will depend on the selection of parameters. Selection of optimal parameters may be formulated as an
evolutionary search to make SC models fully adaptable and optimal according to the requirements [9].

8.0 ACKNOWLEDGEMENT

The authors would like to formally acknowledge both anonymous reviewers for their insightful comments,
suggestions and criticisms, which considerably improved the quality of this paper.

Sorwar and Abraham

22

REFERENCES

[1] F. Borko, Video and Image Processing in Multimedia Systems, Kluwer Academic publishers, 1995, pp. 225-

249.

[2] G. K. Wallace, “Overview of the JPEG still Image Compression standard”, in SPIE 1244, 1990, pp. 220-233.

[3] D. J. Le Gall, “The MPEG Video Compression Algorithm: A Review,” SPIE 1452, (1991) pp. 444-457.
[4] Sang-Mi Lee, Hee_Jung Bae, and Sung-Hwan Jung, “Efficient Content-Based Image Retrieval Methods

Using Color and Texture”, ETRI Journal 20, 1998, pp. 272-283.

[5] L. A. Zadeh, Roles of Soft Computing and Fuzzy Logic in the Conception, Design and Deployment of

Information/Intelligent Systems, Computational Intelligence: Soft Computing and Fuzzy-Neuro Integration
with Applications. O Kaynak, L. A Zadeh, B. Turksen, I. J. Rudas (Eds.), 1998, pp. 1-9.

[6] N. Kasabov, “Evolving Fuzzy Neural Networks - Algorithms, Applications and Biological Motivation, in

Yamakawa T and Matsumoto G (Eds), Methodologies for the Conception, Design and Application of Soft
Computing”, World Scientific, 1998, pp. 271-274.

[7] G. Sorwar, A. Abraham and L. Dooley, “Texture Classification Based on DCT and Soft Computing”, in the

10th IEEE International Conference on Fuzzy Systems, Melbourne, Australia, December 2001.

[8] J. M. Zurada, Introduction to Artificial Neural Systems, PWS Pub Co, 1992.

[9] A. Abraham, “Meta-Learning Evolutionary Artificial Neural Networks”. Neurocomputing Journal, Elsevier

Science, Netherlands, Vol. 56c, 2004, pp. 1-38.

[10] A. Abraham, “Neuro-Fuzzy Systems: State-of-the-Art Modeling Techniques, Connectionist Models of

Neurons, Learning Processes, and Artificial Intelligence”. Lecture Notes in Computer Science. Volume.
2084, Springer Verlag Germany, Jose Mira and Alberto Prieto (Eds.), ISBN 3540422358, Spain, 2001, pp.
269-276.

[11] V. Cherkassky, “Fuzzy Inference Systems: A Critical Review, Computational Intelligence: Soft Computing

and Fuzzy-Neuro Integration with Applications”, Kayak O, Zadeh LA et al (Eds.), Springer, 1998, pp. 177-
197.

[12] E. M. Mamdani and S. Assilian, “An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller”.

International Journal of Man-Machine Studies, 7(1), 1975, pp. 1-13.

[13] N. Kasabov and B. Woodford, “Rule Insertion and Rule Extraction from Evolving Fuzzy Neural Networks:

Algorithms and Applications for Building Adaptive, Intelligent Expert Systems”, in the FUZZ-IEEE'99
International Conference on Fuzzy Systems, Seoul, Korea, 1999.

BIOGRAPHY

Golam Sorwar received B.Sc (Hons.) degree in Electrical and Electronic Engineering in 1994 from Bangladesh
University of Engineering and Technology (BUET), M.Sc. degree in Electrical, Electronic and Systems Eng. in
1998 from National University of Malaysia, and Ph.D. degree in IT from Monash University, Australia in 2003. He
is currently a lecturer at School of Multimedia and Information Technology at Southern Cross University, Australia,
where his major research interests are in the fields of image/video coding, indexing and retrieval, motion estimation,
shot detection, multimedia communication, and artificial intelligence. He is a member of ACS, IEEE, and Institute
of Engineers of Bangladesh (IEB).

DCT Based Texture Classification Using a Soft Computing Approach

23

Ajith Abraham is a faculty member of the Computer Science Department at Oklahoma State University. He
received PhD degree from Monash University, Australia. Master of Science degree was obtained from Nanyang
Technological University, Singapore and a First Class Bachelor of Technology (honours) degree from University of
Calicut, India. His primary research interests are in computational intelligence with a focus on hybridising different
intelligent paradigms. Application areas include several real world knowledge-mining applications like information
security, bioinformatics, Web intelligence, energy management, financial modelling, weather analysis, fault
monitoring, multi criteria decision-making etc. He has co-authored over 100 research publications in peer reviewed
international conference proceedings and reputed journals of which three have won ‘best paper’ awards.

He is an associate editor of the International Journal of Systems Science (IJSS), Taylor and Francis, London and the
founding co-editor in chief of The International Journal of Hybrid Intelligent Systems (IJHIS). He has guest edited
over 7 special issues of scientific journals for Kluwer Academic Publishers USA, Elsevier Science Netherlands and
International Journal of Neural Parallel and Scientific Computations, USA. He served as the General Chair/co-chair
of the Intelligent Systems Design and Applications (ISDA) and Hybrid Intelligent Systems (HIS) series of
international conferences that was started in 2001. ISDA and HIS series of conferences are technically co-
sponsored by the IEEE Systems, Man and Cybernetics Society. He is the General Chair of the 9th online World
Conference in Soft Computing in industrial applications (WSC9), which will be held on the World Wide Web
during September 2004. During the last three years, he has also served the technical committee of over 30 AI
related International conferences and has also given a number of conference tutorials in the area of hybrid intelligent
systems. He is a member of IEEE, IEEE (CS), ACM, IEE (UK), IEAust and also works closely with several
academic working groups like EvoNet, EUSFLAT, WFSC, etc.

