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Finding reducts is one of the key problems in the increasing applications
of rough set theory, which is also one of the bottlenecks of the rough set
methodology. The population-based reduction approaches are attractive to
find multiple reducts in the decision systems. In this chapter, we introduce
two nature inspired population-based computational optimization techniques,
Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) for rough
set reduction. Particle Swarm Optimization (PSO) is particularly attractive
for the challenging problem as a new heuristic algorithm. The approach dis-
cover the best feature combinations in an efficient way to observe the change of
positive region as the particles proceed throughout the search space. We eval-
uated the performance of the two algorithms using some benchmark datasets
and the corresponding computational experiments are discussed. Empirical
results indicate that both methods are ideal for all the considered problems
and particle swarm optimization technique outperformed the genetic algo-
rithm approach by obtaining more number of reducts for the datasets. We
also illustrate a real world application in fMRI data analysis, which is helpful
for cognition research.

1 Introduction

Rough set theory [1, 2, 3] provides a mathematical tool that can be used
for both feature selection and knowledge discovery. It helps us to find out
the minimal attribute sets called ‘reducts’ to classify objects without dete-
rioration of classification quality and induce minimal length decision rules
inherent in a given information system. The idea of reducts has encouraged
many researchers in studying the effectiveness of rough set theory in a num-
ber of real world domains, including medicine, pharmacology, control sys-
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tems, fault-diagnosis, text categorization, social sciences, switching circuits,
economic/financial prediction, image processing, and so on [4, 5, 6, 7, 8, 9, 10].

Usually real world objects are the corresponding tuple in some decision
tables. They store a huge quantity of data, which is hard to manage from a
computational point of view. Finding reducts in a large information system is
still an NP-hard problem [11]. The high complexity of this problem has mo-
tivated investigators to apply various approximation techniques to find near-
optimal solutions. Many approaches have been proposed for finding reducts,
e.g., discernibility matrices, dynamic reducts, and others [12, 13]. The heuris-
tic algorithm is a better choice. Hu et al. [14] proposed a heuristic algorithm
using discernibility matrix. The approach provided a weighting mechanism to
rank attributes. Zhong and Dong [15] presented a wrapper approach using
rough sets theory with greedy heuristics for feature subset selection. The aim
of feature subset selection is to find out a minimum set of relevant attributes
that describe the dataset as well as the original all attributes do. So finding
reduct is similar to feature selection. Zhong’s algorithm employed the num-
ber of consistent instances as heuristics. Banerjee et al. [16] presented various
attempts of using Genetic Algorithms in order to obtain reducts. Although
several variants of reduct algorithms are reported in the literature, at the mo-
ment, there is no accredited best heuristic reduct algorithm. So far, it is still
an open research area in rough sets theory.

Conventional approaches for knowledge discovery always try to find a good
reduct or to select a set of features [32]. In the knowledge discovery applica-
tions, only the good reduct can be applied to represent knowledge, which is
called a single body of knowledge. In fact, many information systems in the
real world have multiple reducts, and each reduct can be applied to generate
a single body of knowledge. Therefore, multi-knowledge based on multiple
reducts has the potential to improve knowledge representation and decision
accuracy [18]. However, it would be exceedingly time-consuming to find mul-
tiple reducts in an instance information system with larger numbers of at-
tributes and instances. In most of strategies, different reducts are obtained
by changing the order of condition attributes and calculating the significance
of different condition attribute combinations against decision attribute(s). It
is a complex multi-restart processing about condition attribute increasing or
decreasing in quantity. Population-based search approaches are of great ben-
efits in the multiple reduction problems, because different individual trends
to be encoded to different reduct. So it is attractive to find multiple reducts
in the decision systems.

Particle swarm algorithm is inspired by social behavior patterns of organ-
isms that live and interact within large groups. In particular, it incorporates
swarming behaviors observed in flocks of birds, schools of fish, or swarms of
bees, and even human social behavior, from which the Swarm Intelligence (SI)
paradigm has emerged [19]. The swarm intelligent model helps to find optimal
regions of complex search spaces through interaction of individuals in a pop-
ulation of particles [20, 21, 22]. As an algorithm, its main strength is its fast
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convergence, which compares favorably with many other global optimization
algorithms [23, 24]. It has exhibited good performance across a wide range
of applications [25, 26, 27, 28, 29]. The particle swarm algorithm is particu-
larly attractive for feature selection as there seems to be no heuristic that can
guide search to the optimal minimal feature subset. Additionally, it can be
the case that particles discover the best feature combinations as they proceed
throughout the search space.

The main focus of this chapter is to introduce how particle swarm opti-
mization algorithm may be applied for the difficult problem of finding multiple
reducts. The rest of the chapter is organized as follows. Some related terms
and theorems on rough set theory are explained briefly in Section 2. The pro-
posed approach based on particle swarm algorithm is presented in Section 3.
In Section 4, experiment results and discussions are provided in detail. In Sec-
tion 5, we illustrate an application in fMRI data analysis. Finally conclusions
are made in Section 6.

2 Rough Set Reduction

The basic concepts of rough set theory and its philosophy are presented and
illustrated with examples in [1, 2, 3, 15, 30, 31, 32]. Here, we illustrate only
the relevant basic ideas of rough sets that are relevant to the present work.

In rough set theory, an information system is denoted in 4-tuple by S =
(U,A, V, f), where U is the universe of discourse, a non-empty finite set of N
objects {x1, x2, · · · , xN}. A is a non-empty finite set of attributes such that
a : U → Va for every a ∈ A (Va is the value set of the attribute a).

V =
⋃

a∈A

Va

f : U × A → V is the total decision function (also called the information
function) such that f(x, a) ∈ Va for every a ∈ A, x ∈ U . The information
system can also be defined as a decision table by S = (U,C, D, V, f). For the
decision table, C and D are two subsets of attributes. A = {C∪D}, C∩D = ∅,
where C is the set of input features and D is the set of class indices. They are
also called condition and decision attributes, respectively.

Let a ∈ C∪D, P ⊆ C∪D. A binary relation IND(P ), called an equivalence
(indiscernibility) relation, is defined as follows:

IND(P ) = {(x, y) ∈ U × U | ∀a ∈ P, f(x, a) = f(y, a)} (1)

The equivalence relation IND(P ) partitions the set U into disjoint sub-
sets. Let U/IND(P ) denote the family of all equivalence classes of the re-
lation IND(P ). For simplicity of notation, U/P will be written instead
of U/IND(P ). Such a partition of the universe is denoted by U/P =
{P1, P2, · · · , Pi, · · · }, where Pi is an equivalence class of P , which is denoted
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[xi]P . Equivalence classes U/C and U/D will be called condition and decision
classes, respectively.
Lower Approximation: Given a decision table T = (U,C, D, V, f). Let R ⊆
C ∪D, X ⊆ U and U/R = {R1, R2, · · · , Ri, · · · }. The R-lower approximation
set of X is the set of all elements of U which can be with certainty classified
as elements of X, assuming knowledge R. It can be presented formally as

APR−R(X) =
⋃
{Ri | Ri ∈ U/R, Ri ⊆ X} (2)

Positive Region: Given a decision table T = (U,C, D, V, f). Let B ⊆ C,
U/D = {D1, D2, · · · , Di, · · · } and U/B = {B1, B2, · · · , Bi, · · · }. The B-
positive region of D is the set of all objects from the universe U which can be
classified with certainty to classes of U/D employing features from B, i.e.,

POSB(D) =
⋃

Di∈U/D

APR−B(Di) (3)

Positive Region: Given a decision table T = (U,C, D, V, f). Let B ⊆ C,
U/D = {D1, D2, · · · , Di, · · · } and U/B = {B1, B2, · · · , Bi, · · · }. The B-
positive region of D is the set of all objects from the universe U which can be
classified with certainty to classes of U/D employing features from B, i.e.,

POSB(D) =
⋃

Di∈U/D

B−(Di) (4)

Reduct : Given a decision table T = (U,C, D, V, f). The attribute a ∈ B ⊆ C is
D−dispensable in B, if POSB(D) = POS(B−{a})(D); otherwise the attribute
a is D− indispensable in B. If all attributes a ∈ B are D− indispensable in
B, then B will be called D − independent. A subset of attributes B ⊆ C is
a D − reduct of C, iff POSB(D) = POSC(D) and B is D − independent. It
means that a reduct is the minimal subset of attributes that enables the same
classification of elements of the universe as the whole set of attributes. In other
words, attributes that do not belong to a reduct are superfluous with regard
to classification of elements of the universe. Usually, there are many reducts in
an instance information system. Let 2A represent all possible attribute subsets
{{a1}, · · · , {a|A|}, {a1, a2}, · · · , {a1, · · · , a|A|}}. Let RED represent the set of
reducts, i.e.,

RED = {B | POSB(D) = POSC(D), POS(B−{a})(D) < POSB(D)}
(5)

Multi-knowledge: Given a decision table T = (U,C, D, V, f). Let RED repre-
sent the set of reducts, Let ϕ is a mapping from the condition space to the
decision space. Then multi-knowledge can be defined as follows:

Ψ = {ϕB | B ∈ RED} (6)
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Reduced Positive Universe and Reduced Positive Region: Given a decision
table T = (U,C, D, V, f). Let U/C = {[u′1]C , [u

′
2]C , · · · , [u

′
m]C}, Reduced Pos-

itive Universe U
′
can be written as:

U
′
= {u′1, u

′
2, · · · , u

′
m}. (7)

and
POSC(D) = [u

′
i1 ]C ∪ [u

′
i2 ]C ∪ · · · ∪ [u

′
it
]C . (8)

Where ∀u′is
∈ U

′
and |[u′is

]C/D| = 1(s = 1, 2, · · · , t). Reduced positive uni-
verse can be written as:

U
′
pos = {u′i1 , u

′
i2 , · · · , u

′
it
}. (9)

and ∀B ⊆ C, reduced positive region

POS
′
B(D) =

⋃

X∈U ′/B∧X⊆U ′pos∧|X/D|=1

X (10)

where |X/D| represents the cardinality of the set X/D. ∀B ⊆ C, POSB(D) =
POSC(D) if POS

′
B = U

′
pos [31]. It is to be noted that U

′
is the reduced uni-

verse, which usually would reduce significantly the scale of datasets. It pro-
vides a more efficient method to observe the change of positive region when we
search the reducts. We didn’t have to calculate U/C, U/D, U/B, POSC(D),
POSB(D) and then compare POSB(D) with POSC(D) to determine whether
they are equal to each other or not. We only calculate U/C, U

′
, U

′
pos, POS

′
B

and then compare POS
′
B with U

′
pos.

3 Nature Inspired Heuristics for Reduction

Combinatorial optimization problems are important in many real life appli-
cations and recently, the area has attracted much research with the advances
in nature inspired heuristics and multi-agent systems.

3.1 Particle Swarm Optimization for Reduction

Given a decision table T = (U,C,D, V, f), the set of condition attributes,
C, consist of m attributes. We set up a search space of m dimension for
the reduction problem. Accordingly, each particle’s position is represented as
a binary bit string of length m. Each dimension of the particle’s position
maps one condition attribute. The domain for each dimension is limited to
0 or 1. The value ‘1’ means the corresponding attribute is selected while
‘0’ not selected. Each position can be “decoded” to a potential reduction
solution, an subset of C. The particle’s position is a series of priority levels
of the attributes. The sequence of the attribute will not be changed during
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the iteration. But after updating the velocity and position of the particles, the
particle’s position may appear real values such as 0.4, etc. It is meaningless for
the reduction. Therefore, we introduce a discrete particle swarm optimization
for this combinatorial problem.

During the search procedure, each individual is evaluated using the fitness.
According to the definition of rough set reduct, the reduction solution must
ensure the decision ability is the same as the primary decision table and the
number of attributes in the feasible solution is kept as low as possible. In our
algorithm, we first evaluate whether the potential reduction solution satisfies
POS

′
E = U

′
pos or not (E is the subset of attributes represented by the potential

reduction solution). If it is a feasible solution, we calculate the number of ‘1’
in it. The solution with the lowest number of ‘1’ would be selected. For the
particle swarm, the lower number of ‘1’ in its position, the better the fitness
of the individual is. POS

′
E = U

′
pos is used as the criterion of the solution

validity.
As a summary, the particle swarm model consists of a swarm of particles,

which are initialized with a population of random candidate solutions. They
move iteratively through the d-dimension problem space to search the new
solutions, where the fitness f can be measured by calculating the number of
condition attributes in the potential reduction solution. Each particle has a
position represented by a position-vector pi (i is the index of the particle),
and a velocity represented by a velocity-vector vi. Each particle remembers
its own best position so far in a vector p#

i , and its j-th dimensional value is
p#

ij . The best position-vector among the swarm so far is then stored in a vector
p∗, and its j-th dimensional value is p∗j . When the particle moves in a state
space restricted to zero and one on each dimension, the change of probability
with time steps is defined as follows:

P (pij(t) = 1) = f(pij(t− 1), vij(t− 1), p#
ij(t− 1), p∗j (t− 1)). (11)

where the probability function is

sig(vij(t)) =
1

1 + e−vij(t)
. (12)

At each time step, each particle updates its velocity and moves to a new
position according to Eqs.(13) and (14):

vij(t) = wvij(t−1)+φ1r1(p
#
ij(t−1)−pij(t−1))+φ2r2(p∗j (t−1)−pij(t−1)).

(13)

pij(t) =

{
1 if ρ < sig(vij(t));
0 otherwise.

(14)

Where φ1 is a positive constant, called as coefficient of the self-recognition
component, φ2 is a positive constant, called as coefficient of the social com-
ponent. r1 and r2 are the random numbers in the interval [0,1]. The variable
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w is called as the inertia factor, which value is typically setup to vary linearly
from 1 to near 0 during the iterated processing. ρ is random number in the
closed interval [0, 1]. From Eq.(13), a particle decides where to move next,
considering its current state, its own experience, which is the memory of its
best past position, and the experience of its most successful particle in the
swarm. The pseudo-code for the particle swarm search method is illustrated
in Algorithm 1.

Algorithm 1 A Rough Set Reduct Algorithm Based on Particle Swarm

01.Calculate U
′
, U

′
pos using Eqs.(7) and (9).

02.Initialize the size of the particle swarm n, and other parameters.
03.Initialize the positions and the velocities for all the particles randomly.
04.While (the end criterion is not met) do
05. t = t + 1;
06. Calculate the fitness value of each particle,
06. if POS

′
E 6= U

′
pos, the fitness is punished

06. as the total number of the condition attributes,
06. else the fitness is the number of ‘1’ in the position.
07. p∗ = argminn

i=1(f(p∗(t− 1)), f(p1(t)), f(p2(t)), · · · , f(pi(t)), · · · , f(pn(t)));
08. For i= 1 to n
09. p#

i (t) = argminn
i=1(f(p#

i (t− 1)), f(pi(t));
10. For j = 1 to d
11. Update the j-th dimension value of pi and vi

11. according to Eqs.(13) and (14);
12. Next j
13. Next i
14.End While.

3.2 Genetic Algorithms for Reduction

In nature, evolution is mostly determined by natural selection, where indi-
viduals that are better are more likely to survive and propagate their genetic
material. The encoding of genetic information (genome) is done in a way
that admits asexual reproduction, which results in offspring’s that are ge-
netically identical to the parent. Sexual reproduction allows some exchange
and re-ordering of chromosomes, producing offspring that contain a combi-
nation of information from each parent. This is the recombination operation,
which is often referred to as crossover because of the way strands of chromo-
somes crossover during the exchange. Diversity in the population is achieved
by mutation. A typical evolutionary (genetic) algorithm procedure takes the
following steps: A population of candidate solutions (for the optimization task
to be solved) is initialized. New solutions are created by applying genetic op-
erators (mutation and/or crossover). The fitness (how good the solutions are)
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of the resulting solutions are evaluated and suitable selection strategy is then
applied to determine which solutions will be maintained into the next gener-
ation. The procedure is then iterated [38]. The pseudo-code for the genetic
algorithm search method is illustrated in Algorithm 2.

Algorithm 2 A Rough Set Reduct Algorithm Based on Genetic Algorithm

01.Calculate U
′
, U

′
pos using Eqs.(7) and (9).

02.Initialize the population randomly, and other parameters.
03.While (the end criterion is not met) do
04. Evaluate the fitness of each individual in the population,
04. if POS

′
E 6= U

′
pos, the fitness is punished

04. as the total number of the condition attributes,
04. else the fitness is the number of ‘1’ in the position;
05. Select best-ranking individuals to reproduce;
06. Breed new generation through crossover operator and give birth to offspring;
07. Breed new generation through mutation operator and give birth to offspring;
08. Evaluate the individual fitnesses of the offspring,
08. if POS

′
E 6= U

′
pos, the fitness is punished,

08. as the total number of the condition attributes,
09. else the fitness is the number of ‘1’ in the position;
10. Replace worst ranked part of population with offspring;
11.Until terminating criteria.

4 Experiments Using Some Benchmark Problems

For all experiments, Genetic algorithm (GA) was used to compare the perfor-
mance with PSO. The two algorithms share many similarities [33, 34]. Both
methods are valid and efficient methods in numeric programming and have
been employed in various fields due to their strong convergence properties.
Specific parameter settings for the algorithms are described in Table 1, where
D is the dimension of the position, i.e., the number of condition attributes.
Besides the first small scale rough set reduction problem shown in Table 2,
the maximum number of iterations is (int)(0.1 ∗ recnum + 10 ∗ (nfields− 1))
in each trial, where recnum is the number of records/rows and nfields − 1
is the number of condition attributes. Each experiment (for each algorithm)
was repeated 3 times with different random seeds. If the standard deviation
is larger than 20%, the times of trials were set to larger, 10 or 20.

To analyze the effectiveness and performance of the considered algorithms,
first we tested a small scale rough set reduction problem shown in Table 2.
In the experiment, the maximum number of iterations was fixed as 10. Each
experiment was repeated 3 times with different random seeds. The results
(the number of reduced attributes) for 3 GA runs were all 2. The results of
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Table 1. Parameter settings for the algorithms.

Algorithm ParameterName V alue

GA
size of the population (int)(10 + 2 ∗ sqrt(D))
Probability of crossover 0.8
Probability of mutation 0.08

PSO
Swarm size (int)(10 + 2 ∗ sqrt(D))
Self coefficient φ1 1.49
Social coefficient φ2 1.49
Inertia weight w 0.9 → 0.1
Clamping Coefficient ρ 0.5

3 PSO runs were also all 2. The optimal result is supposed to be 2. But the
reduction result for 3 GA runs is {2, 3} while the reduction results for 3 PSO
runs are {1, 4} and {2, 3}. Table 3 depicts the reducts for Table 2. Figure 1
shows the performance of the algorithms for Table 2. For the small scale rough
set reduction problem, GA has faster convergence than PSO. There seems like
a conflict between the instances 13 and 15. It depends on conflict analysis and
how to explain the obtained knowledge, which is beyond the scope of this
chapter.

Table 2. A decision table.

Instance c1 c2 c3 c4 d

x1 1 1 1 1 0
x2 2 2 2 1 1
x3 1 1 1 1 0
x4 2 3 2 3 0
x5 2 2 2 1 1
x6 3 1 2 1 0
x7 1 2 3 2 2
x8 2 3 1 2 3
x9 3 1 2 1 1
x10 1 2 3 2 2
x11 3 1 2 1 1
x12 2 3 1 2 3
x13 4 3 4 2 1
x14 1 2 3 2 3
x15 4 3 4 2 2
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Table 3. A reduction of the data in Table 2.

Reduct Instance c1 c2 c3 c4 d

{1, 4}
x1 1 1 0
x2 2 1 1
x4 2 3 0
x6 3 1 0
x7 1 2 2
x8 2 2 3
x9 3 1 1
x13 4 2 1
x14 1 2 3
x15 4 2 2

{2, 3}
x1 1 1 0
x2 2 2 1
x4 3 2 0
x6 1 2 0
x7 2 3 2
x8 3 1 3
x9 1 2 1
x13 3 4 1
x14 2 3 3
x15 3 4 2

0 2 4 6 8 10
1.9

1.95

2

2.05

2.1

2.15

2.2

2.25

2.3

2.35

Iteration

R

GA
PSO

Fig. 1. Performance of rough set reduction for the data in Table 2
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Further we consider the datasets in Table 4 from AFS3, AiLab4 and UCI5.
Figures 2, 3, 4 and 5 illustrate the performance of the algorithms for lung-
cancer, lymphography and mofn-3-7-10 datasets, respectively. For lung-cancer
dataset, the results (the number of reduced attributes) for 3 GA runs were
10: {1, 3, 9, 12, 33, 41, 44, 47, 54, 56} (The number before the colon is the
number of condition attributes, the numbers in brackets are attribute index,
which represents a reduction solution). The results of 3 PSO runs were 9: {
3, 8, 9, 12, 15, 35, 47, 54, 55}, 10: {2, 3, 12, 19, 25, 27, 30, 32, 40, 56}, 8: {11,
14, 24, 30, 42, 44, 45, 50}. For zoo dataset, the results of 3 GA runs all were
5: {3, 4, 6, 9, 13}, the results of 3 PSO runs were 5: {3, 6, 8, 13, 16, }, 5: {4, 6,
8, 12, 13}, 5: {3, 4, 6, 8, 13}. For lymphography dataset, the results of 3 GA
runs all were 7: {2, 6, 10, 13, 14, 17, 18}, the results of 3 PSO runs were 6: {2,
13, 14, 15, 16, 18}, 7: {1, 2, 13, 14, 15, 17, 18}, 7: {2, 10, 12, 13, 14, 15, 18}.
For mofn-3-7-10 dataset, the results of 3 GA runs all were 7: {3, 4, 5, 6, 7, 8,
9} and the results of 3 PSO runs were 7: {3, 4, 5, 6, 7, 8, 9}. Other results
are shown in Table 4, in which only the best objective results are listed. PSO
usually obtained better results than GA, specially for the large scale problems.
Although GA and PSO achieved the same results, PSO usually requires only
very few iterations, as illustrated in Figure 4. It indicates that PSO have a
better convergence than GA for the larger scale rough set reduction problem,
although PSO is worst for some small scale rough set reduction problems. It
is to be noted that PSO usually can obtain more candidate solutions for the
reduction problems.

Table 4. Datasets used in the experiments.

Dataset Size ConditionAttributes Class GA PSO

lung-cancer 32 56 3 10 8
zoo 101 16 7 5 5
corral 128 6 2 4 4
lymphography 148 18 4 7 6
hayes-roth 160 4 3 3 3
shuttle-landing-control 253 6 2 6 6
monks 432 6 2 3 3
xd6-test 512 9 2 9 9
balance-scale 625 4 3 4 4
breast-cancer-wisconsin 683 9 2 4 4
mofn-3-7-10 1024 10 2 7 7
parity5+5 1024 10 2 5 5

3 http://sra.itc.it/research/afs/
4 http://www.ailab.si/orange/datasets.asp
5 http://www.datalab.uci.edu/data/mldb-sgi/data/
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Fig. 2. Performance of rough set reduction for lung-cancer dataset
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Fig. 3. Performance of rough set reduction for zoo dataset

5 Application in fMRI Data Analysis

Functional Magnetic Resonance Imaging (fMRI) is one of the most impor-
tant tools for Neuroinformatics, which combines neuroscience and informatics
science and computational science to develop approaches needed to under-
stand human brain [35]. The study of human brain function has received a
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Fig. 4. Performance of rough set reduction for lymphography dataset
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Fig. 5. Performance of rough set reduction for mofn-3-7-10 dataset

tremendous boost in recent years due to the advent of the new brain imaging
technique.

With the development of the new technology, a mass of fMRI data is
collected ceaselessly. These datasets implicate very important information,
which need to be extracted and translated to intelligible knowledge. Recently
most of the research are focused on the activation features on the Region
of Interest (ROI) through statistical analysis for single experiment or using



14 Liu, Abraham and Li

only a few data. Neuroscientists or psychologists provide explanation for the
experimental results, which depends strongly on their accumulative experience
and subjective tendency. What is more, it is difficult to deal with slightly large
datasets. So it is exigent to develop some computational intelligence methods
to analyze them effectively and objectively. Rough set theory provides a novel
approach to reduct the fMRI data and extract meaningful knowledge. There
are usually many reducts in the information system, which can be applied to
generate multi-knowledge. The rough set approach consists of several steps
leading towards the final goal of generating rules [36].

The main steps of the rough set approach are: (1)mapping of the informa-
tion from the original database into the decision system format; (2) completion
of data; (3) discretization of data; (4) computation of reducts from data; (5)
derivation of rules from reducts; (6) filtering of rules. One of most important
task is the data reduction process.

A typical normalized image contains more than 500,000 voxels, so it is
impossible that feature vector can contain so immense voxels. We transform
datasets from MNI template to Talairach coordinate system. Then we can use
the region information in Talairach as features to reduce the dimensionality of
the images. We used a SPM99 software package6 and in-house programs for
image processing, including corrections for head motion, normalization and
global fMRI signal shift [37]. A simplified workflow is illustrated in Figure
6. Feature selection & extraction algorithm for fMRI data is described in
Algorithm 3. The location for feature selection & extraction is shown in Figure
7.

Algorithm 3 Feature selection & extraction algorithm for fMRI data
Step 1. Find out the most active voxels in several regions of brain under the t-test
of basic models in SPM99 and save their coordinates.
Step 2. Scan fMRI image and search the voxels according to the coordinates saved.
Step 3. Respectively average all voxels in the spherical region whose center is cor-
responding saved voxel and whose radius is a predefined constant. These results of
a single image are formed one feature vector.
Step 4. If the image isn’t the last one, go to Step 2, otherwise, end.

We analyzed the fMRI data from three cognition experiments: Tongue
movement experiment, Associating Chinese verb experiment, and Looking at
or silent reading Chinese word experiment. They are involved in 9 tasks: 0 -
Control task; 1 - Tongue movement; 2 - Associating verb from single noun; 3
- Associating verb from single non-noun; 4 - Making verb before single word;
5 - Looking at number; 6 - Silent reading Number; 7 - Looking at Chinese
word; 8 - Silent reading Chinese word. Some of rules are described as follows:
6 http://www.fil.ion.ucl.ac.uk/spm/
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Fig. 6. Pre-precessing workflow for fMRI data

Rule1: if M1=2, SMA=2, Broca=2 then Task=1;
Rule2: if BAs { 7,19,20,40,44,45 } =3, BSC=2 then Task=2;
Rule3: if BAs { 10,11,13,44,45 } =3, BSC=1 then Task=3;
Rule4: if BAs { 7,19,40 } =3, BSC=3 then Task=4;
Rule5: if SMA=2, Broca=3 then Task=6;
Rule6: if SMA=2, Broca=2, Wernike=3 then Task=8.
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Fig. 7. Developed software interface for feature selection and extraction

6 Conclusions

In this Chapter, we introduced the problem of finding optimal reducts using
particle swarm optimization and genetic algorithm approaches. The consid-
ered approaches discovered the good feature combinations in an efficient way
to observe the change of positive region as the particles proceed throughout
the search space. Population-based search approaches are of great benefits
in the multiple reduction problems, because different individual trends to be
encoded to different reduct. Empirical results indicate that PSO usually re-
quired shorter time to obtain better results than GA, specially for large scale
problems, although its stability need to be improved in further research. PSO
have a better convergence than GA for the larger scale rough set reduction
problem, although PSO is worst for some small scale rough set reduction prob-
lems. PSO also can obtain more candidate solutions for the reduction prob-
lems. The population-based algorithms could be ideal approaches for solving
the reduction problem. We also illustrated an application in fMRI data anal-
ysis. Although the correctness of the rules need neuroscientists to analyze and
verify further, the approach is helpful for cognition research.
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