
Jigsaw-based Secure Data Transfer over Computer Networks

Rangarajan A. Vasudevan
Dept. of Computer Science and Engineering

Indian Institute of Technology
Chennai 600036 India
ranga@cs.iitm.ernet.in

Ajith Abraham
Computer Science Dept.

Oklahoma State University
OK 74106 USA

ajith.abraham@ieee.org

Sugata Sanyal
School of Technology and Computer Science

Tata Institute of Fundamental Research
Mumbai 400005 India

sanyal@tifr.res.in

Dharma P. Agrawal
Dept. of ECECS

University of Cincinnati
OH 45221-0030 USA

dpa@ececs.uc.edu

Abstract

In this paper, we present a novel encryption-less algo-
rithm to enhance security in transmission of data in net-
works. The algorithm uses an intuitively simple idea of a
“jigsaw puzzle” to break the transformed data into multi-
ple parts where these parts form the pieces of the puzzle.
Then these parts are packaged into packets and sent to the
receiver. A secure and efficient mechanism is provided to
convey the information that is necessary for obtaining the
original data at the receiver-end from its parts in the pack-
ets, that is, for solving the “jigsaw puzzle”. The algorithm
is designed to provide information-theoretic (that is, uncon-
ditional) security by the use of a one-time pad like scheme
so that no intermediate or unintended node can obtain the
entire data. An authentication code is also used to ensure
authenticity of every packet.

1. Introduction

Security of network communications is arguably the
most important issue in the world today given the vast
amount of valuable information that is passed around in
various networks. Information pertaining to banks, credit
cards, personal details, and government policies are trans-
ferred from place to place with the help of networking in-
frastructure. The high connectivity of the World Wide Web
(WWW) has left the world “open”. Such openness has re-
sulted in various networks being subjected to multifarious
attacks from vastly disparate sources, many of which are
anonymous and yet to be discovered. This growth of the

WWW coupled with progress in the fields of e-commerce
and the like has made the security issue even more impor-
tant.

Encryption is a typical method used for security. Asym-
metric key based encryption techniques like RSA ([10])
involve algebraic multiplications with very large numbers.
The cost that has to be paid in their implementation is thus
high. Symmetric key based encryption algorithms like DES
([7]) are less secure computationally than their asymmetric
counterparts. It is possible to break into the computational
security offered by such algorithms (as was the case with
DES). So, any alternative to encryption is welcome so long
as the level of security is the same or higher. Also, such an
alternative should be more efficient in its usage of resources.

In practice, in a computer network, data is transferred
across nodes in the form of packets of fixed size. Any form
of security required is obtained by implementing crypto-
graphic algorithms at the application level on the data as a
whole. Then, the enciphered data is packetized at lower lev-
els (in the OSI model) and sent. Any intruder able to obtain
all the packets can then obtain the enciphered data by appro-
priately ordering the data content of each of these packets.
Then, efforts can be made to break the cryptographic algo-
rithm used by the sender. In the process of transmission,
if it is possible to prevent any information release as to the
structure of the data within the packets, an intruder would
know neither the nature of the data being transferred nor the
ordering of the content from different packets. This is what
our algorithm achieves by using a one-time pad like scheme
at the source.

The essential idea in our algorithm is to break the data
that is to be transferred into many chunks, which we call

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04)
0-7695-2108-8/04 $ 20.00 © 2004 IEEE

“parts”. These parts when put together form the whole data
but only if done so in a particular way, just like in a “jigsaw”
puzzle. The only way of doing so is known to the receiver
for whom the data is intended. We have incorporated ef-
ficient techniques that enhance the security of the scheme,
and at the same time implement the desired features. The
concept on which our algorithm hinges heavily is that of the
one-time pad. It was first proposed by Vernam in [12]. A
formal proof of the perfect-secrecy property of the one-time
pad was later provided by Shannon in [11]. As can be seen
from the references, the one-time pad offers unconditional
security as against conditional security of encryption algo-
rithms.

2. Related Work

Owing to several issues mostly pertaining to key man-
agement, the theoretical one-time pad has been tough to
implement practically. Numerous attempts have been made
but under varying assumptions and conditions. One of the
most recent has been [13] where one-time pads are used
to protect credit card usage on the Internet. In [5], it has
been argued that unconditional security can be obtained in
practice using non-information -theoretically secure meth-
ods. This approach maintains that in the practical world,
nobody can obtain complete information about a system
owing to real-world parameters like noise. Likewise, [1],
[6] and [4] provide implementations of one-time pads and
unconditional security but under assumptions about the en-
vironment and/or adversary. [3] provides a quantum cryp-
tographic view of one-time pads.Technological and prac-
tical limitations constrict the scalability of such methods.
Chaotic maps are used to generate random numbers in [2],
and these are used to build symmetric encryption schemes
including one-time pads. Chaos theoretical methods though
providing non-traditional methods of random number gen-
eration, are prone to cryptanalysis owing to the still-existent
pseudorandom nature, and impose numerous restrictions on
data size as is the case with [2].

In this paper, we provide an efficient implementation of
the one-time pad without making assumptions or imposing
restrictions, the likes of which are true of the references
quoted in the previous paragraph. In the process, the core
issues including key management are addressed. Due to its
general nature, our algorithm can be deployed in most real-
life networks without a fundamental change in the idea.

3. The Algorithm

In this algorithm, we use the concept of Message Au-
thentication Code (MAC) as suggested in [9] to authenticate
messages. For a packet of data, the MAC is calculated as a

function of the data contents, the packet sequence number
and a secret key known only to the sender and the receiver,
and then it is appended to the packet. On receiving a packet,
the receiver first computes the MAC using the appropriate
parameters, and then performs a check with the MAC at-
tached to the packet. If there is no match, then the receiver
knows that the packet has been tampered with. For a de-
tailed analysis, the reader is referred to [9].

Let the size of a packet in a network be denoted as PS.
PS has a value of 1024-bits or 4096-bits typically. The pre-
requisite of the algorithm is the knowledge for the sender
and the receiver only of a number P, exchanged a priori, of
size k*PS, where k is a natural number. We can consider P
in terms of blocks of size PS each, as ��� ��� � � � � ��. Thus
P is the number obtained by the concatenation of the ��

blocks for i from 1 to k, that is, P is ���� � � ���.
In this algorithm, we only consider k-1 parts of a data

at a time, where each part is of any size less than or equal
PS-2 (a detailed analysis of the algorithm is presented in the
next section). If the entire data is not covered in these k-1
parts, then the algorithm can be repeated by considering the
next k-1 parts and so on. Also, a random number of size PS
is required to be generated for every k-1 blocks processed.
Denote this random number as R.

The steps at the sender’s end of the algorithm are as
follows:

S(D)

1. ”Tear the data D into N parts arbitrarily”. Consider
the first k-1 parts of D. Call them ��� ��� � � � � ����.
Prefix and suffix each part by the binary digit ’1’.

2. Perform the operation ���� � �� � i from 1 to k-1.
Denote them as ��

�
� ��

�
� � � � � ��

���
.

3. Form ��

�
as ��

�
� �� ��.

4. Perform transform(P,R).

5. Generate a new random number and assign it to R.

6. Repeat steps 1, 2, 3, 4, 5 for the next k-1 blocks of data,
and so on until all N parts are processed.

Now the packets actually transferred are formed from the
��

�
blocks, packet sequence number and the MAC (calcu-

lated as described earlier).
At the receiver’s end, the steps are as follows:

R(D’)

1. Perform a check on the MAC for each packet. If satis-
fied, GOTO next step.

2. Order packets according to the packet sequence num-
ber.

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04)
0-7695-2108-8/04 $ 20.00 © 2004 IEEE

3. For each group of k packets perform the following:

- Perform �� ���

�
� i from 1 to k-1

- Perform �� ���

�
and obtain R.

- Remove the leading and trailing ’1’ of all the val-
ues obtained from the previous two steps.

- Perform transform(P,R).

- continue

The algorithm for the operation transform(P,R) is as
follows:

transform(P,R)

1. Set �� � �� �� � i from 1 to k-1.

2. Set �� � �� ��.

For the transfer of the next data, the following is done.
The sender knows the number of parts of the previous data
and hence knows the value of N % k, where % denotes the
’modulo’ operation. Now, this value subtracted from k pro-
vides the ��s unused in the last run of the loop in the al-
gorithm. The next data to be transferred is first broken into
parts as before. For the first run of the loop in the algorithm,
the first k-1- (N%k) (here, this is the old value of N) parts
are only considered and the run executed. For the remain-
ing runs, we consider k-1 parts as before, and the algorithm
is continued. This is done for all subsequent data transfers
between the sender and the same receiver.

4. An Analysis

4.1. Discussion

The essential idea in the algorithm is to split the data
into pieces of arbitrary size (rather, the size is not arbitrary
since it is bound by 0 and PS-2 but is allowed to take any
value between the limits), transmit the pieces securely, and
provide a mechanism to unite the pieces at the receiver’s
end. Towards this, the role of the number P is to provide a
structure for the creation of the ”jigsaw” puzzle. This struc-
ture masks the pieces as well as protects the data within.
The structure is changed periodically with the knowledge
of both the sender and the receiver to prevent an adversary
gaining information about it.

The� function is reversible and can be easily performed
by the receiver since he knows the secret number P. How-
ever, an adversary without knowing P cannot obtain any ad-
ditional information. This is because of the following.

Given a ciphertext C of length PS, and a random secret
key P of length PS, the probability of any particular key is
the same. If it is possible to guess the message M such that

C = M � P, then it is possible to determine the value of P.
Since every secret key P is equally likely, there is no way
of guessing which of the possible messages of length PS or
less was sent. In other words, let us assume that the adver-
sary has as much knowledge of the cryptographic mecha-
nism as the receiver does (except, of course, knowledge of
the secret key P). Now, the only knowledge that an adver-
sary has about both M and P is that one is a binary string
of length PS while the other is of length less than PS. Then,
knowledge of the ciphertext C does not provide the adver-
sary with any more information pertaining to either M or P.
This is the information-theoretic security property of a one-
time pad (for more details, refer [11]). ! The value��

�
obeys

this one-time pad property since both �� and�� are random
numbers as far as the adversary is concerned. Thus, it is im-
possible for an adversary to get any more information given
this value. Thus, all of �� remain completely unknown to
the adversary.

Now, after k parts are processed, it is not possible to
repeat the values ��� ��� � � �. Else, by manipulations due
to the reversible nature of �, some information might be
leaked to the adversary. Therefore, the next set of values
have to be changed, and towards this a random number
of equal size is used. Also, this random number is to be
conveyed to the receiver without any adversary knowing its
value. Hence, we introduce the random number as the kth
part. This random number is used to calculate the next P
to be used. Since the initial P was a secret for the adver-
sary, and so is the random number, the new value of P is
also a secret. Thus, the security of the data transmission is
ensured. In our model of the one-time pad, data is of ef-
fective size less than (k-1)*PS bits and the key ’xor’ed with
the data at each stage is the number ���� � � �����. The
random number R is used as an input to a function (namely
tran! sform()) to generate the key for the next run. The
value �� is used to securely convey the random number R,
that is generated by the sender, to the receiver.

The need for prefixing and suffixing every part with the
bit ’1’ is explained below. By ’xor’ing a part with a ran-
dom (with respect to the adversary) key of size PS, we are
effectively embedding the data in some place in the key.
However, there is a problem of the receiver not knowing
where the data is embedded. This is best illustrated with
an hypothetical example. Suppose the part is the binary se-
quence 01101, and the key is the sequence 11000110 where
PS=8. Now embedding the data at position 3 from the left
in the key, we get the value as 11011000. When the receiver
performs the ’xor’ of this value with the key, the value he
obtains is 00011010. Now, there is no way of knowing
whether the leading or the trailing zeros are part of the data
or not. This is the reason for the use of the single bit ’1’
to prefix and suffix each part. As an illustration of this, we
continue with the same example. Note that the part is neces-

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04)
0-7695-2108-8/04 $ 20.00 © 2004 IEEE

Figure 1. Comparison based on XORs alone.

sarily smaller than the key by at least 2. Here the part under
question is affixed and prefixed by ’1’, and then embedded
in the key at position 2, say (position 3 can no longer be
used). In this case, the resultant value is 10011101. On per-
forming the ’xor’ with the key, the receiver obtains the value
01011011. From this value, he considers only the binary se-
quence sandwiched between the first and last occurrences of
the bit ’1’ which is the intended part.

A point of worry is that the arbitrary “tearing” of data
might result in a huge expansion of data. That is, due to
the randomness in the splitting, the amount of data sent to
convey some fixed amount of information might be huge.
To avoid this, the algorithm provides the flexibility to fix a
lower limit on the size a part can take. This ensures that
a minimum amount of information is transferred to the re-
ceiver by each part. Thus, the overheads in the algorithm
can be suitably controlled by the lower-limit size. It has
been proved by Shannon in [11] that in a one-time pad, as
long as the data is of a size lesser than or equal to the key
used, then the perfect-secrecy property is maintained. This
justifies the statements made in this paragraph. In fact, for
least overhead, each part could be made of size PS (in this
case, there is no need to prefix and suffix with bit ’1’). Our
algorithm is however a general case of this, providing more
security to lessen the probability of a serendipitically suc-
cessful attack.

The security offered by the algorithm is the same as that
provided by one-time pad - information-theoretic security.
This is evident from the fact that the jigsaw is structured by
an embedding of the data in the key using the ’xor’ opera-
tion. However, unlike the one-time pad, keys used in our al-
gorithm are not completely uncorrelated since the next key
is formed as a function of the current key and a random
value. Thus, under conditions of information leakage, the
security offered by our approach fails while the one-time
pad continues to offer the same level of security to the un-
exposed data. The nature of security under such conditions

Figure 2. Change in number of XORs with k

has not been studied here.
For private-key message authentication purposes, an-

other secret key might be needed. However, since any PS-
size block of P cannot be guessed from its first use, it is
possible to use any of them or parts of it (in case a smaller
key is desired) for message authentication by the calculation
of MAC. This information is also to be exchanged a priori
along with the number P as well as the value of k. For dif-
ferent sender-receiver pairs, different secret numbers P are
needed. It is necessary to take care to see that this indeed is
the case.

4.2. Implementation Issues

In our algorithm, for the transfer of N parts of data, there
are N additions performed. Apart from these operations,
the value of P is changed ��

�
� times. At each change, there

are k-1 additions and 1 multiplication. Hence, in total our
algorithm requires � � ��

�
� � �� � �� additions and ��

�
�

multiplications on PS-bit blocks for the transfer of N parts
of data. There is a degree of uncertainty involved in the
amount of information transferred in a part as the splits
happen arbitrarily. This uncertainty can, however, be re-
moved marginally by imposing a lower limit on the size a
part can take thus ensuring a transfer of minimum informa-
tion in each part. Let the value of k=7. To transfer data
of size 10*PS, assuming the best case of PS- size parts, we
have N=10, and therefore we effectively require 16*PS bit
additions and 1 PS-bit multiplication. In the worst case,
assuming the lower limit ! on size of each part to be ��

�

, we require 20 parts to transfer the same amount of data
in which case we would effectively require 32*PS bit ad-
ditions and 2 PS-bit multiplications. A graph of the best
case(corresponding to each part being of maximum size =
PS) and the worst case (corresponding to each part being
of minimum size = ��

�
) in the number of additions versus

data size is shown in figure 1. Figure 2 depicts the plot of

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04)
0-7695-2108-8/04 $ 20.00 © 2004 IEEE

Figure 3. Change in number of multiplications
with k

the number of additions in the best and worst cases as a
function of the value k (assuming N=10). Figure 3 plots the
number of multiplications as a function of k (again assum-
ing N=10). It is important to note that as k increases, the
size of P also increases. Therefore, an optimum value of k
should be arrived at by analysing these graphs and statistics.

A comparison with other encryption algorithms is valid
only when the application of those algorithms is for secure
data transmission. From this viewpoint, the statistics pre-
sented above compare favourably with respect to encryption
algorithms like Advanced Encryption Standard(AES) [8].
In AES, for input block size of 128-bits and key length of
128-bits, there are atleast 11 ’xor’ operations apart from ma-
trix multiplications, table lookups and vector shifts. When
AES is scaled to an input of 10 PS-size blocks, it requires
110*PS bit additions, far more operations than our algo-
rithm functioning in the worst case as can also be witnessed
in the figure 1 (we have not included the matrix multipli-
cations, table lookups and vector shifts in our calculations).
Also, our algorithm does not transform the data except for
the ’xor’ operation. This operation and its inverse can be
easily computed. Hence, as compared to encryption algo-
rithms like AES, DES ([7]) and RSA ([10]), the data pro-
cessing time is least for our algorithm.

Our algorithm lends itself to parallelism in implementa-
tion in software as well as dedicated hardware. The execu-
tion of the operation transform(P,R) should follow the pro-
cessing of k blocks. This sequentiality cannot be avoided.
However, the processing of the blocks can be done in a
parallel manner. In principle, the algorithm can be imple-
mented efficiently using k ’xor’ gates. If number of gates is
also a constraint, for best performance, the value of k should
be decided accordingly.

5. Conclusion

In this paper, we adopt a “jigsaw” approach to secure
data transfer in networks. The data to be sent is broken into
parts of arbitrary sizes. Enough information is provided ef-
ficiently and securely to enable the receiver to solve the “jig-
saw” puzzle. The transfer of the parts is done securely with-
out leaking any information to the adversary regarding the
data. We have illustrated a method of implementing mes-
sage authentication by private key without the exchange of
any more information. The concept of the one-time pad
is implemented in the course of the algorithm resulting in
information-theoretic security of data transfer. The issue of
key management is addressed by firstly the exchange of a
large number a priori, and then subsequent modifications
to the large number at regular intervals. These modifica-
tions are designed such that their outputs seem random to
the adversary. Also, flexibility in the form of a means of
control is provided in the algorithm to monitor and check
the overhead resulting because of the data expansion due to
the arbitrary splitting.

References

[1] C. Cachin and U. Maurer. Unconditional security against
memory-bounded adversaries. LNCS, 1294:292–306, 1997.

[2] J. Fridrich. Symmetric ciphers based on two-dimensional
chaotic maps. Intl. J. of Bifurcation and Chaos (IJBC) in
Applied Sciences and Engineering, 8-6, 1998.

[3] G.Brassard and C.Crépeau. 25 years of quantum cryptogra-
phy. SIGACT News, 27-3:13–24, 1996.

[4] M. Günter, M. Brogle, and T. Braun. Secure communica-
tion: a new application for active networks. 2001.

[5] U. Maurer. Information-theoretic cryptography (extended
abstract). LNCS, 1666:47–64, 1999.

[6] U. Maurer and S. Wolf. Unconditionally secure key agree-
ment and the intrinsic conditional information. IEEE Trans.
on Information Theory, 45-2:499–514, 1999.

[7] N. B. of Standards. Data encryption standard, 1977.
[8] N. B. of Standards. Advanced encryption standard, 2001.
[9] R. L. Rivest. Chaffing and winnowing: Confidentiality with-

out encryption. 1998.
[10] R. L. Rivest, A. Shamir, and L. Adleman. A method for

obtaining digital signatures and public key cryptosystems.
Comm. of the ACM, 21-2:120–126, 1978.

[11] C. E. Shannon. Communication theory of secrecy systems.
Bell Systems Technical J., 28:656–715, 1949.

[12] G. S. Vernam. Cipher printing telegraph systems for secret
wire and radio telegraphic communications. J. American
Inst. for Electrical Engineers, 55:109–115, 1926.

[13] D. Xu, C. Lu, and A. D. Santos. Protecting web usage of
credit cards using one-time pad cookie encryption. 2002.

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04)
0-7695-2108-8/04 $ 20.00 © 2004 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	01: 3
	02: 4
	03: 5
	04: 6
	05: 7
	06: 8
	07: 9
	08: 10
	09: 11
	10: 47

