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Abstract. The use of intelligent systems for stock market predictions
has been widely established. In this paper, we investigate how the seem-
ingly chaotic behavior of stock markets could be well represented using
Flexible Neural Tree (FNT) ensemble technique. To this end, we con-
sidered the Nasdaq-100 index of Nasdaq Stock MarketSM and the S&P
CNX NIFTY stock index. We analyzed 7-year Nasdaq-100 main index
values and 4-year NIFTY index values. This paper investigates the devel-
opment of novel reliable and efficient techniques to model the seemingly
chaotic behavior of stock markets. The structure and parameters of FNT
are optimized by using Genetic Programming (GP) and particle Swarm
Optimization (PSO) algorithms, repectively. A good ensemble model is
formulated by the Local Weighted Polynomial Regression (LWPR). This
paper investigates whether the proposed method can provide the re-
quired level of performance, which is sufficiently good and robust so as
to provide a reliable forecast model for stock market indices. Experiment
results shown that the model considered could represent the stock indices
behavior very accurately.

1 Introduction

Prediction of stocks is generally believed to be a very difficult task - it behaves
like a random walk process and time varying. The obvious complexity of the
problem paves the way for the importance of intelligent prediction paradigms.
During the last decade, stocks and futures traders have come to rely upon var-
ious types of intelligent systems to make trading decisions [1][2]. Several in-
telligent systems have in recent years been developed for modelling expertise,
decision support and complicated automation tasks[3][4]. In this paper, we an-
alyzed the seemingly chaotic behavior of two well-known stock indices namely
the Nasdaq-100 index of NasdaqSM [5] and the S&P CNX NIFTY stock index
[6]. The Nasdaq-100 index reflects Nasdaq’s largest companies across major in-
dustry groups, including computer hardware and software, telecommunications,
retail/wholesale trade and biotechnology [5]. The Nasdaq-100 index is a modi-
fied capitalization-weighted index, which is designed to limit domination of the



Index by a few large stocks while generally retaining the capitalization ranking
of companies. Through an investment in the Nasdaq-100 index tracking stock,
investors can participate in the collective performance of many of the Nasdaq
stocks that are often in the news or have become household names. Similarly,
S&P CNX NIFTY is a well-diversified 50 stock index accounting for 25 sectors
of the economy [6]. It is used for a variety of purposes such as benchmarking
fund portfolios, index based derivatives and index funds. The CNX Indices are
computed using market capitalization weighted method, wherein the level of the
Index reflects the total market value of all the stocks in the index relative to a
particular base period. The method also takes into account constituent changes
in the index and importantly corporate actions such as stock splits, rights, etc.
without affecting the index value.

Our research is to investigate the performance analysis of FNT[9][10] ensem-
ble for modelling the Nasdaq-100 and the NIFTY stock market indices. The
hierarchical structure of FNT is evolved using GP with specific instructions.
The parameters of the FNT model are optimized by PSO algorithm [7]. We an-
alyzed the Nasdaq-100 index value from 11 January 1995 to 11 January 2002
[5] and the NIFTY index from 01 January 1998 to 03 December 2001 [6]. For
both the indices, we divided the entire data into almost two equal parts. No spe-
cial rules were used to select the training set other than ensuring a reasonable
representation of the parameter space of the problem domain [2].

2 The Flexible Neural Tree Model

The function set F and terminal instruction set T used for generating a FNT
model are described as S = F

⋃
T = {+2,+3, . . . ,+N}

⋃{x1, . . . , xn}, where
+i(i = 2, 3, . . . , N) denote non-leaf nodes’ instructions and taking i arguments.
x1,x2,. . .,xn are leaf nodes’ instructions and taking no other arguments. The out-
put of a non-leaf node is calculated as a flexible neuron model (see Fig.1). From
this point of view, the instruction +i is also called a flexible neuron operator
with i inputs.

In the creation process of neural tree, if a nonterminal instruction, i.e., +i(i =
2, 3, 4, . . . , N) is selected, i real values are randomly generated and used for
representing the connection strength between the node +i and its children. In
addition, two adjustable parameters ai and bi are randomly created as flexible
activation function parameters. For developing the FNT, the flexible activation

function f(ai, bi, x) = e
−(

x−ai
bi

)2 is used. The total excitation of +n is netn =∑n
j=1 wj ∗ xj , where xj(j = 1, 2, . . . , n) are the inputs to node +n. The output

of the node +n is then calculated by outn = f(an, bn, netn) = e−( netn−an
bn )2 .

The overall output of flexible neural tree can be computed from left to right by
depth-first method, recursively.
Tree Structure Optimization. Finding an optimal or near-optimal neural
tree is formulated as a product of evolution. In this study, the crossover and
selection operators used are same as those of standard GP. A number of neural
tree mutation operators are developed as follows:
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Fig. 1. A flexible neuron operator (left), and a typical representation of the FNT
with function instruction set F = {+2, +3, +4, +5, +6}, and terminal instruction set
T = {x1, x2, x3} (right)

(1) Changing one terminal node: randomly select one terminal node in the neural
tree and replace it with another terminal node;

(2) Changing all the terminal nodes: select each and every terminal node in the
neural tree and replace it with another terminal node;

(3) Growing: select a random leaf in hidden layer of the neural tree and replace
it with a newly generated subtree.

(4) Pruning: randomly select a function node in the neural tree and replace it
with a terminal node.

Parameter Optimization with PSO. The Particle Swarm Optimization (PSO)
conducts searches using a population of particles which correspond to individuals
in evolutionary algorithm (EA). A population of particles is randomly generated
initially. Each particle represents a potential solution and has a position repre-
sented by a position vector xi. A swarm of particles moves through the problem
space, with the moving velocity of each particle represented by a velocity vector
vi. At each time step, a function fi representing a quality measure is calculated
by using xi as input. Each particle keeps track of its own best position, which is
associated with the best fitness it has achieved so far in a vector pi. Furthermore,
the best position among all the particles obtained so far in the population is kept
track of as pg. In addition to this global version, another version of PSO keeps
track of the best position among all the topological neighbors of a particle. At
each time step t, by using the individual best position, pi, and the global best
position, pg(t), a new velocity for particle i is updated by

vi(t + 1) = vi(t) + c1φ1(pi(t)− xi(t)) + c2φ2(pg(t)− xi(t)) (1)

where c1 and c2 are positive constant and φ1 and φ2 are uniformly distributed
random number in [0,1]. The term vi is limited to the range of ±vmax. If the
velocity violates this limit, it is set to its proper limit. Changing velocity this
way enables the particle i to search around its individual best position, pi, and
global best position, pg. Based on the updated velocities, each particle changes
its position according to the following equation:

xi(t + 1) = xi(t) + vi(t + 1). (2)



Procedure of the general learning algorithm. The general learning proce-
dure for constructing the FNT model can be described as follows.

1) Create an initial population randomly (FNT trees and its corresponding
parameters);

2) Structure optimization is achieved by the neural tree variation operators as
described in subsection 2.

3) If a better structure is found, then go to step 4), otherwise go to step 2);
4) Parameter optimization is achieved by the PSO algorithm as described in

subsection 2. In this stage, the architecture of FNT model is fixed, and it is
the best tree developed during the end of run of the structure search. The
parameters (weights and flexible activation function parameters) encoded in
the best tree formulate a particle.

5) If the maximum number of local search is reached, or no better parameter
vector is found for a significantly long time then go to step 6); otherwise go
to step 4);

6) If satisfactory solution is found, then the algorithm is stopped; otherwise go
to step 2).

3 The FNT Ensemble

The Basic Ensemble Method. A simple approach to combining network
outputs is to simply average them together. The basic ensemble method (BEM)
output is defined:

fBEM =
1
n

n∑

i=1

fi(x) (3)

This approach by itself can lead to improved performance, but doesn’t take into
account the fact that some FNTs may be more accurate than others. It has the
advantage that it is easy to understand and implement and can be shown not
to increase the expected error.
The Generalized Ensemble Method. A generalization to the BEM method
is to find weights for each output that minimize the positive and negative classi-
fication rates of the ensemble. The general ensemble method (GEM) is defined:

fBEM =
n∑

i=1

αifi(x) (4)

where the α′is are chosen to minimize the root mean square error between
the FNT outputs and the desired values. For comparison purpose, the opti-
mal weights of the ensemble predictor are optimized by using PSO algorithm.
The LWPR Method. To investigate more efficient ensemble method, a LWPR
approximation approach is employed in this work[11]. In this framework, the final
output of FNT ensemble is approximated by a local polynomial model, i.e.,

fLWPR =
M∑

i=1

βiti(x) (5)



where ti is a function that produces the ith term in the polynomial. For example,
with two inputs and a quadratic local model we would have t1(x) = 1, t2(x) = x1,
t3(x) = x2, t4(x) = x2

1, t5(x) = x1x2, t6(x) = x2
2. Equation (5) can be written

more compactly as

fLWPR = βT t(x) (6)

where t(x) is the vector of polynomial terms of the input x and β is the vector
of weight terms. The weight of the ith datapoint is computed as a decaying
function of Euclidean distance between xk and xquery. β is chosen to minimize

N∑

i=1

ω2
i (fLWPR − βT t(x)) (7)

where ωi is a Gaussian weight function with kernel width K:

ωi = exp(−Distance2(xi, xquery)/2K2). (8)

4 Experiments

We considered 7-year stock data for the Nasdaq-100 Index and 4-year for the
NIFTY index. Our target is to develop efficient forecast models that could pre-
dict the index value of the following trade day based on the opening, closing and
maximum values of the same on a given day. The assessment of the prediction
performance of the different ensemble paradigms were done by quantifying the
prediction obtained on an independent data set. The Root Mean Squared Error
(RMSE), Maximum Absolute Percentage Error (MAP) and Mean Absolute Per-
centage Error (MAPE) and Correlation Coefficient (CC) were used to study the
performance of the trained forecasting model for the test data. MAP is defined
as follows:

MAP = max(
|Pactual,i − Ppredicted,i|

Ppredicted,i
× 100) (9)

where Pactual,i is the actual index value on day i and Ppredicted,iis the forecast
value of the index on that day. Similarly MAPE is given as

MAPE =
1
N

N∑

i=1

(
|Pactual,i − Ppredicted,i|

Ppredicted,i
)× 100 (10)

where N represents the total number of days.
We used instruction set I = {+2,+3,. . ., +6,x0, x1,x2} for modeling the

Nasdaq-100 index and instruction set I = {+2,+3, . . . , +8, x0, x1,x2, x3, x4}
for modeling the NIFTY index. We have conducted 10 FNT models for predict-
ing the Nasdaq-100 index and the NIFTY index, respectively. And then three
ensemble methods discussed in Section 3 are employed to predict the both index.



Table 1. Empirical comparison of RMSE results for four learning methods

Best-FNT BEM GEM LWPR

Nasdaq-100 0.01854 0.01824 0.01635 4.41× 10−5

NIFTY 0.01315 0.01258 0.01222 1.96× 10−7

Table 2. Statistical analysis of four learning methods (test data)

Best-FNT BEM GEM LWPR

Nasdaq-100

Correlation coefficient 0.997542 0.997610 0.997757 0.999999

MAP 98.1298 98.3320 97.3347 0.4709

MAPE 6.1090 6.3370 5.7830 0.0040

NIFTY

Correlation coefficient 0.996908 0.997001 0.0997109 0.999999

MAP 28.0064 34.3687 26.8188 7.65× 10−4

MAPE 3.2049 2.9303 2.6570 1.92× 10−5

Table 1 summarizes the test results achieved for the two stock indices using
the four different approaches. Performance analysis of the trained forecasting
models for the test data was shown in Table 2. Figures 2 and 3 depict the
test results for the one day ahead prediction of the Nasdaq−100 index and the
NIFTY index respectively.

5 Conclusions

In this paper, we have demonstrated how the chaotic behavior of stock indices
could be well represented by FNT ensemble learning paradigm. Empirical results
on the two data sets using FNT ensemble models clearly reveal the efficiency of
the proposed techniques. In terms of RMSE values, for the Nasdaq-100 index and
the NIFTY index, LWPR performed marginally better than other models. For
both index (test data), LWPR also has the highest correlation coefficient and the
lowest value of MAPE and MAP values. A low MAP value is a crucial indicator
for evaluating the stability of a market under unforeseen fluctuations. In the
present example, the predictability assures the fact that the decrease in trade is
only a temporary cyclic variation that is perfectly under control. Our research
was to predict the share price for the following trade day based on the opening,
closing and maximum values of the same on a given day. Our experiment results
indicate that the most prominent parameters that affect share prices are their
immediate opening and closing values. The fluctuations in the share market are
chaotic in the sense that they heavily depend on the values of their immediate
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Fig. 2. Test results showing the performance of the different methods for modeling the
Nasdaq-100 index
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Fig. 3. Test results showing the performance of the different methods for modeling the
NIFTY index

forerunning fluctuations. Long-term trends exist, but are slow variations and
this information is useful for long-term investment strategies. Our study focus
on short term, on floor trades, in which the risk is higher. However, the results
of our study show that even in the seemingly random fluctuations, there is an
underlying deterministic feature that is directly enciphered in the opening, clos-
ing and maximum values of the index of any day making predictability possible.
Empirical results also show that LWPR is a distinguished candidate for the FNT
ensemble or neural networks ensemble.
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