
A New Particle Swarm Optimization Algorithm Incorporating Reproduction

Operator for Solving Global Optimization Problems

Millie Pant
1
, Radha Thangaraj

1
 and Ajith Abraham

2

1
Department. of Paper Techology, IIT Roorkee, India

2
Center of Excellence for Quantifiable Quality of Service,

Norwegian University of Science and Technology, Norway

millifpt@iitr.ernet.in, t.radha@ieee.org, ajith.abraham@ieee.org

Abstract

This paper presents a new variant of Basic Particle

Swarm Optimization (BPSO) algorithm named QI-PSO

for solving global optimization problems. The QI-PSO

algorithm makes use of a multiparent, quadratic

crossover/reproduction operator defined by us in the

BPSO algorithm. The proposed algorithm is compared

it with BPSO and the numerical results show that QI-

PSO outperforms the BPSO algorithm in all the sixteen

cases taken in this study.

1. Introduction

 Evolutionary Algorithms (EA) and Particle Swarm

Optimization (PSO) are perhaps the two most common

population based, stochastic search techniques for

solving continuous global optimization problems. Both

the techniques have been quite efficient in solving

complex optimization problems (test cases as well as

real life problems). On one hand, EA are inspired from

the metaphor of natural biological evolution using the

concepts of selection, mutation and reproduction. On

the other hand, PSO uses the complex social

cooperative and competitive behavior exhibited by

different species like birds, bees humans etc. some of

the similarities between the EA and PSO as pointed out

by Angeline [1] may be given as:

� Both are population based search techniques.

� Neither requires the auxiliary knowledge of the

problem.

� In both the algorithms, solutions belonging to the

same population interact with each other during the

search process to move towards the better optima.

� The quality of the solutions are improved using

techniques inspired from real world phenomenon

like human genetics in case of EA and cooperative

behavior in case of PSO.

Both the algorithms have their share of weaknesses

and strengths and One of the simplest methods to

enhance the performance of both the algorithms is to

exploit the strengths of both the algorithms together in

a single algorithm. A number of techniques suggesting

a combo of these two methods are available in

literature. Out of the EA operators’ viz. selection,

crossover and mutation, the one that has been used

most frequently is the mutation operator. Some of the

commonly used mutation operators used in PSO

algorithms are Gaussian, Cauchy, linear, nonlinear

operators etc. For a detailed description, the reader is

suggested [2] - [7]. However, for selection and

reproduction operator only a few examples are

available (see for instance Angeline [8], Clerc [9]).

In this paper we have suggested the use of a new

crossover operator named quadratic crossover operator

in a BPSO algorithm. The most potent particle (one

having the lowest objective function value) is selected

as the leader of the swarm (tribe). The leader is then

allowed to mate with two other randomly chosen

particles of the swarm (tribe). The child (or new

particle) lies at the point of minima of the quadratic

curve passing through the three (different) chosen

particles (leader and two mates).

The remaining paper is structured as follows: in

Section 2, we have briefly explained the Basic Particle

Swarm Optimization, in Section 3; we have defined the

proposed QI-PSO algorithm. Section 4 deals with

experimental settings. Section 5 gives numerical results

and finally the paper concludes with Section 6.

Seventh International Conference on Hybrid Intelligent Systems

0-7695-2946-1/07 $25.00 © 2007 IEEE
DOI 10.1109/HIS.2007.20

144

2. Basic Particle Swarm Optimization

PSO is a relatively newer addition to a class of

population based search technique for solving

numerical optimization problems. The particles or

members of the swarm fly through a multidimensional

search space looking for a potential solution. Each

particle adjusts its position in the search space from

time to time according to the flying experience of its

own and of its neighbors (or colleagues).

For a D-dimensional search space the position of the

ith particle is represented as Xi = (xi1, xi2, …, xiD). Each

particle maintains a memory of its previous best

position Pbesti = (pi1, pi2… piD). The best one among all

the particles in the population is represented as Pgbest =

(pg1, pg2… pgD). The velocity of each particle is

represented as Vi = (vi1, vi2, … viD). In each iteration,

the P vector of the particle with best fitness in the local

neighborhood, designated g, and the P vector of the

current particle are combined to adjust the velocity

along each dimension and a new position of the particle

is determined using that velocity. The two basic

equations which govern the working of PSO are that of

velocity vector and position vector given by:

)()(2211 idgdidididid xprcxprcwvv −+−+= (1)

ididid vxx += (2)

The first part of (1) represents the inertia of the

previous velocity, the second part is the cognition part

and it tells us about the personal experience of the

particle, the third part represents the cooperation

among particles and is therefore named as the social

component [10]. Acceleration constants c1, c2 [11] and

inertia weight w [12] are the predefined by the user and

r1, r2 are the uniformly generated random numbers in

the range of [0, 1]. The computational steps of BPSO

algorithm are illustrated below.

3. Proposed QI-PSO Algorithm

The proposed QI-PSO algorithm is a simple and

modified version of BPSO in which we have induced

the concept of reproduction (borrowed from EA).

The basic idea of this paper is loosely based on the

concept of polygamy (still prevalent in some of the

tribal regions of India), where the leader of the tribe is

allowed to have more than one partner. The QI-PSO

algorithm works in the following manner. In every

iteration, a leader of the swarm (tribe) is selected

according to the performance and the one giving the

least function value is taken to be the leader of the

tribe. Once the leader is elected, then its partners (or

mates) are chosen randomly from the remaining

members of the tribe. For producing a new offspring

from the union of three parents, we have defined a new

crossover operator.

The quadratic crossover operator, based on quadratic

interpolation [13], suggested in this paper is a nonlinear

crossover operator which produces an offspring lying

at the minimum of the quadratic curve passing through

the three selected parents. The QI-PSO algorithm starts

like the usual BPSO using equations (1) and (2). After

that the crossover operator is invoked and the new

particle is accepted in the swarm only if it is better than

the worst particle present in the swarm. The process is

repeated iteratively until a better solution is obtained. It

uses a = Xmin, (the leader having minimum function

value) and two other randomly selected particles {b, c}

(a, b and c are different particles) from the swarm

(tribe) to determine the coordinates of the new

particle)~,.......,~,~(~ 21 ni
xxxx = , where

)(*)()(*)()(*)(

)(*)()(*)()(*)(

2

1~
222222

cfbabfacafcb

cfbabfacafcb
x

iiiiii

iiiiii
i

−+−+−

−+−+−
= (3)

 The nonlinear nature of the quadratic crossover

operator used in this work helps in finding a better

solution in the search space. The computational steps

of the algorithm are illustrated below.

145

Table 1. Numerical benchmark problems

Function Dim Range
Min.

value

)10)2cos(10()(
1

2
1 +∑ −=

=
i

n

i
i xxxf π 30/50 [-5.12,5.12] 0

∑=
=

n

i
ixxf

1

2
2)(30/50 [-5.12,5.12] 0

1)
1

cos(
4000

1
)(

1

0

1

0

2
3 +∑

+
−∑=

−

=

−

=

n

i

i
n

i
i

i

x
xxf 30/50 [-600,600] 0

)||sin()(
1

4 ∑−=
=

n

i
ii xxxf 30/50 [-500,500]

-

418.9829*

n

∑ +−+=
−

=
+

1

1
1

22
1

2
5)](sin101[)1()(sin10{)(

n

i
ii yyy

n
xf ππ

π

)4,100,10,(})1(
1

2
∑+−+
=

n

i
in xuy *

30/50 [-50,50] 0

)))3(sin1()1(()3(){sin1.0()(1

1

1

22
1

2
6 +

−

=

∑ +−+= i

n

i
i xxxxf ππ

 ∑++−+
−

=

1

0

2)4,100,5,())}2(sin1)(1(
n

i
inn xuxx π *

30/50 [-50,50] -1.1428

∑ ∏+=
−

=

−

=

1

0

1

0
7 ||||)(

n

i

n

i
ii xxxf 30/50 [-10,10] 0

||max)(8 ixxf = , ni <≤0 30/50 [-100,100] 0

 ∑ +=
−

=

1

0

2
2/1)(

9

n

i
ixxf 30/50 [-100,100] 0

∑ ++=
−

=

1

0

4
10]1,0[))1(()(

n

i
i randxixf 30/50 [-1.28,1.28] 0

∑ ∑=
−

= =

1

0 0

2
11)()(

n

i

i

j
ixxf 30/50 [-100,100] 0

2
1

0

22
112)1()(100)(−+∑ −=

−

=
+ i

n

i
ii xxxxf 30/50 [-30,30] 0

)))3(sin1()1(()3(sin)(1

1

1

22
1

2
13 +

−

=

∑ +−+= i

n

i
i xxxxf ππ

))2(sin1)(1(2
nn xx π+−+

30/50 [-10,10] -21.5024

]0.1))(50([sin)()(10/1

1

224/1

1

2
14 +∑∑=

==

n

i

i

n

i
i xxxf 30/50 [-32.767,32.767] 0

)516(
1

)(
1

24
15 ∑ +−=

=

n

i
iii xxx

n
xf 30/50 [-5,5] -78.3323

∑ ∑ ++−=
= =

n

i j
i jxjjxf

1

5

1
16))1sin(()(30/50 [-10,10] -

Remarks 1. Functions sine and cosine take arguments in radians.

 Remarks 2. The function u used in f5 and f6 and the values yi used in f5 are all defined below.

 *f5 :)1(
4

1
1 ++= ii xy

*f5 , f6 :
caxbcbaxu)(),,,(−= if ax > , caxbcbaxu)(),,,(−−= if ax −< , else 0),,,(=cbaxu

146

Table 2. Numerical results (dimension: 30)

BPSO QI-PSO
Fun-

ction
Mean Best

Fitness
Diversity Stddev

Mean Best

Fitness
Diversity Stddev

f1 81.58668 1.075614e-08 35.570923 0.994954 5.948432e-11 2.354492

f2 2.62144 1.696744e-96 7.86432 2.523604e-45 3.203878e-20 6.505185e-45

f3 0.035265 8.958573e-08 0.029109 0.015979 5.454222e-08 0.013563

f4 -8406.742218 4.550712e-06 595.779702 -9185.074692 4.066819e-06 760.633113

f5 5.505851e-13 1.471375e-13 2.757006e-25 5.505851e-13 7.84124e-13 1.913863e-25

f6 -1.147328 4.805696e-08 0.003296 -1.149339 3.503531e-08 0.003296

f7 4.000000 7.361003e-124 4.89897 5.020939e-30 9.011109e-30 1.271869e-29

f8 0.000244 0.003937 0.000187 0.000148 7.496987e-05 8.128944e-05

f9 0.000000 1.678432 0.000000 0.000000 0.6674 0.000000

f10 24.532977 0.200206 14.640568 0.454374 0.192434 0.353778

f11 8.103896e-06 1.000654e-05 3.623224e-06 2.614209e-40 1.357432e-20 5.848717e-40

f12 99.795759 3.655268 438.491315 77.916591 0.06907 166.009829

f13 -15.301387 5.412045e-08 9.36361 -21.502311 6.948980e-08 3.552714e-15

f14 3.531709 0.730954 2.484447 0.974427 0.000265 0.283325

f15 -77.012904 1.799400e-07 1.049466 -77.201394 1.400101e-07 0.565469

f16 -155.613795 1.508819e-08 17.664877 -179.040627 1.179486e-08 30.28809

Table 3. Numerical results (dimension: 50)

BPSO QI-PSO
Function

Best Fitness Diversity Best Fitness Diversity

f1 192.383628 2.412312 4.77049e-17 2.596399e-09

f2 5.768702e-08 1.492921e-07 2.161201e-73 1.157111e-36

f3 0.019661 8.376331e-08 0.009850 8.484164e-08

f4 -13790.157053 5.204209e-06 -14268.46157 6.065605e-06

f5 2.535693 4.611654e-06 3.303511e-13 1.506118e-13

f6 -1.150438 6.142788e-08 -1.150438 7.384989e-08

f7 9.782400 3.776982e-15 6.552311e-51 2.937678e-50

f8 1.514302 27.53219 0.004083 0.017026

f9 0.000000 1.477857 0.000000 0.659437

f10 110.563669 0.245941 0.672779 0.266817

f11 7.462966e-01 4.993772e-05 9.431749e-71 2.867124e-36

f12 22.191719 2.324115 10.954427 0.036353

f13 -11.000000 5.633709e-08 -21.502311 8.306594e-08

f14 10.012826 24.758948 3.091645 0.002222

f15 -77.234331 2.398338e-07 -77.766863 3.100701e-07

f16 -204.194616 1.54925e-08 -239.204493 1.853805e-08

4. Experimental Settings

In order to make a fair comparison of BPSO and QI-

PSO, we fixed the same seed for random number

generation so that the initial swarm population is same

for both the algorithms. The number of particles in the

swarm (swarm size) is taken as 30. A linearly

decreasing inertia weight is used which starts at 0.9 and

ends at 0.4, with the user defined parameters c1=2.0

and c2=2.0.

We have also evaluated diversity, an important

aspect for checking the efficiency of the swarm, for

147

both the algorithms. The diversity measure [14] of the

swarm is taken as:

∑ ∑ −=
= =

s xn

i

n

j
jij

s

txtx
n

tSDiversity
1 1

2
))()((

1
))(((4)

where S is the swarm, ns = S is the swarm size, nx is

the dimensionality of the problem, xij is the j
’th

 value of

the i’th particle and)(tx j is the average of the j
’th

dimension over all particles, i.e.

s

sn

i
ij

j
n

tx

tx

∑
=

=
1

)(

)(.

For each algorithm, the maximum number of iterations

allowed was set to 30,000 for 30 dimensions and

100,000 for 50 dimensions. For 30 dimensions, a total

of 10 runs for each experimental setting were

conducted and the average fitness of the best solutions

throughout the run was recorded. For 50 dimensions

only a single run was performed and the best fitness

was recorded. Each algorithm was tested with all of the

numerical benchmark problems reported in Table 1.

5. Experimental Results

In order to check the compatibility of the proposed

QI-PSO algorithm we have tested it on a suite of 16

benchmark problems given in Table 1. The test bed

comprises of a variety of problems ranging from a

simple spherical function to highly multimodal

functions and also a noisy function (with changing

optima). In Table 2, we have shown the results of

problems with dimension 30 and in Table 3, are given

the results of all problems with increased dimension 50

in terms of best fitness value and diversity. In Table 4

and 5, we have shown the performance improvement of

QI-PSO with BPSO. Figures 1 - 4 show the mean best

fitness curves for the first four benchmark problems.

From the numerical results presented in Tables 2, 3,

4 and 5, it is evident that QI-PSO is a clear winner. It

gave a better performance in comparison to the BPSO

algorithm for problems with dimension 30 in all the

cases except for function f5 and f9. In this case both

BPSO and QI-PSO performs the same. However it is

quite interesting to note that QI-PSO gave a much

better performance for the same function (f5) when the

dimension is increased to 50. In terms of percentage of

improvement (of average fitness function value), the

results favor QI-PSO particularly for higher dimension

(50).

6. Conclusions

In this we proposed a simple and modified version of

BPSO by incorporating a newly defined crossover

operator in it. The empirical results show that the

proposed algorithm is quite competent for solving

problems of dimensions up to 50.

Metaphorically, this article uses the concept of

polygamy among various Indian tribes, where the

leader of the tribe keeps two partners to produce an

offspring.

However, we would also like to say that since the

results quoted here are based on the empirical study

only and we are yet to explore theoretical relevance of

the proposed QI-PSO, making any concrete judgment

does not sound fair. Moreover the platform on which

we have conducted the experiments is quite narrow.

We are working on the problems with higher

dimensions (100 and above) and in future we would try

more complex optimization problems particularly

problems in dynamic environment.

Table 4. Improvement (%) of QI-PSO in comparison

with BPSO (dimension: 30)

Function
Improvement

 (%)
Function

Improvement

 (%)

f1 98.780495 f9 0.000000

f2 100 f10 98.147905

f3 54.688785 f11 100

f4 9.258432 f12 21.923946

f5 0.000000 f13 40.525241

f6 0.175277 f14 72.409193

f7 100 f15 0.244751

f8 39.344262 f16 15.054469

Table 5. Improvement (%) of QI-PSO in comparison

with BPSO (dimension: 50)

Function
Improvement

 (%)
Function

Improvement

 (%)

f1 100 f9 0.000000

f2 100 f10 99.391501

f3 49.900819 f11 100

f4 3.468449 f12 50.637321

f5 100 f13 95.475555

f6 0.000000 f14 69.123153

f7 100 f15 0.689502

f8 110.877709 f16 17.145348

148

Figure 1. Performance comparison for f1

Figure 2. Performance comparison for f2

Figure 3. Performance comparison for f3

Figure 4. Performance comparison for f4

7. References

[1] Angeline P. J., “Evolutionary Optimization versus

Particle Swarm Optimization: Philosophy and

Performance Difference,” The 7th Annual Conference

on Evolutionary Programming, San Diego,USA,(1998).

[2] X. Hu, R. C. Eberhart, and Y. Shi, “Swarm Intelligence

for Permutation Optimization: A Case Study on n-

Queens problem”, In Proc. of IEEE Swarm Intelligence

Symposium (2003), pp. 243 – 246.

[3] V. Miranda and N. Fonseca, “EPSO – Best-of-two-

worlds Meta-heuristic Applied to Power System

problems”, In Proc. of the IEEE Congress on

Evolutionary Computation, Vol. 2, (2002), pp. 1080 –

1085.

[4] V. Miranda and N. Fonseca, “EPSO – Evolutionary

Particle Swarm Optimization, a New Algorithm with

Applications in Power Systems”, In Proc. of the Asia

Pacific IEEE/PES Transmission and Distribution

Conference and Exhibition, Vol. 2, (2002), pp. 745 –

750.

[5] T-O. Ting, M. V. C. Rao, C. K. Loo, and S-S. Ngu, “A

New Class of Operators to Accelerate Particle Swarm

Optimization “, In Proc. of the IEEE Congresson

Evolutionary Computation, Vol. 4, (2003), pp. 2406 –

2410.

[6] X. Yao and Y. Liu, “Fast Evolutionary Programming”,

In L. J. Fogel, P. J. Angeline, and T. B. Back, editors,

Proceedings of the Fifth Annual Conference on

Evolutionary Programming, MIT Press, (1996), pp. 451

– 460.

[7] X. Yao, Y. Liu and G.Lin, “Evolutionary Programming

made Faster”, IEEE Transactions on Evolutionary

Computation, Vol. 3(2), (1999), pp. 82 – 102.

[8] P. J. Angeline, “Using Selection to Improve Particle

Swarm Optimization”, In Proc. of the IEEE Congress on

Evolutionary Computation, IEEE Press, (1998), pp. 84

– 89.

[9] M. Clerc, “Think Locally, Act Locally: The Way of Life

of Cheap-PSO, an Adaptive PSO”, Technical Report,

http: // clerc.maurice.free.fr/pso/, (2001).

[10] Kennedy, J., “The Particle Swarm: Social Adaptation of

Knowledge,” IEEE International Conference on

Evolutionary Computation (Indianapolis, Indiana),

IEEE Service Center, Piscataway, NJ,(1997), pg.303-

308.

[11] R.C. Eberhart, Y. Shi, “Particle Swarm Optimization:

developments, Applications and Resources,” IEEE

International Conference on Evolutionary Computation,

(2001), pg. 81 -86.

[12] Shi, Y. H., Eberhart, R. C., “A Modified Particle Swarm

Optimizer,” IEEE International Conference on

Evolutionary Computation, Anchorage, Alaska, (1998),

pg. 69 – 73.

[13] M. M. Ali and A. Torn, “Population Set Based Global

Optimization Algorithms: Some Modifications and

Numerical Studies”, www.ima.umn.edu/preprints/,

(2003).

[14] Engelbrecht, A. P., “Fundamentals of Computational

Swarm Intelligence”, John Wiley & Sons Ltd., (2005).

149

