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Abstract 
 

This paper presents a new variant of Basic Particle 

Swarm Optimization (BPSO) algorithm named QI-PSO 

for solving global optimization problems. The QI-PSO 

algorithm makes use of a multiparent, quadratic 

crossover/reproduction operator defined by us in the 

BPSO algorithm. The proposed algorithm is compared 

it with BPSO and the numerical results show that QI-

PSO outperforms the BPSO algorithm in all the sixteen 

cases taken in this study. 

  

1. Introduction 
 

    Evolutionary Algorithms (EA) and Particle Swarm 

Optimization (PSO) are perhaps the two most common 

population based, stochastic search techniques for 

solving continuous global optimization problems. Both 

the techniques have been quite efficient in solving 

complex optimization problems (test cases as well as 

real life problems). On one hand, EA are inspired from 

the metaphor of natural biological evolution using the 

concepts of selection, mutation and reproduction. On 

the other hand, PSO uses the complex social 

cooperative and competitive behavior exhibited by 

different species like birds, bees humans etc. some of 

the similarities between the EA and PSO as pointed out 

by Angeline [1] may be given as: 

� Both are population based search techniques. 

� Neither requires the auxiliary knowledge of the 

problem. 

� In both the algorithms, solutions belonging to the 

same population interact with each other during the 

search process to move towards the better optima. 

� The quality of the solutions are improved using 

techniques inspired from real world phenomenon 

like human genetics in case of EA and cooperative 

behavior in case of PSO.  

Both the algorithms have their share of weaknesses 

and strengths and One of the simplest methods to 

enhance the performance of both the algorithms is to 

exploit the strengths of both the algorithms together in 

a single algorithm. A number of techniques suggesting 

a combo of these two methods are available in 

literature. Out of the EA operators’ viz. selection, 

crossover and mutation, the one that has been used 

most frequently is the mutation operator. Some of the 

commonly used mutation operators used in PSO 

algorithms are Gaussian, Cauchy, linear, nonlinear 

operators etc. For a detailed description, the reader is 

suggested [2] - [7]. However, for selection and 

reproduction operator only a few examples are 

available (see for instance Angeline [8], Clerc [9]). 

In this paper we have suggested the use of a new 

crossover operator named quadratic crossover operator 

in a BPSO algorithm. The most potent particle (one 

having the lowest objective function value) is selected 

as the leader of the swarm (tribe). The leader is then 

allowed to mate with two other randomly chosen 

particles of the swarm (tribe). The child (or new 

particle) lies at the point of minima of the quadratic 

curve passing through the three (different) chosen 

particles (leader and two mates). 

The remaining paper is structured as follows: in 

Section 2, we have briefly explained the Basic Particle 

Swarm Optimization, in Section 3; we have defined the 

proposed QI-PSO algorithm. Section 4 deals with 

experimental settings. Section 5 gives numerical results 

and finally the paper concludes with Section 6. 
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2. Basic Particle Swarm Optimization 
 

PSO is a relatively newer addition to a class of 

population based search technique for solving 

numerical optimization problems. The particles or 

members of the swarm fly through a multidimensional 

search space looking for a potential solution. Each 

particle adjusts its position in the search space from 

time to time according to the flying experience of its 

own and of its neighbors (or colleagues). 

For a D-dimensional search space the position of the 

ith particle is represented as Xi = (xi1, xi2, …, xiD). Each 

particle maintains a memory of its previous best 

position Pbesti = (pi1, pi2… piD). The best one among all 

the particles in the population is represented as Pgbest = 

(pg1, pg2… pgD). The velocity of each particle is 

represented as Vi = (vi1, vi2, … viD). In each iteration, 

the P vector of the particle with best fitness in the local 

neighborhood, designated g, and the P vector of the 

current particle are combined to adjust the velocity 

along each dimension and a new position of the particle 

is determined using that velocity. The two basic 

equations which govern the working of PSO are that of 

velocity vector and position vector given by: 

)()( 2211 idgdidididid xprcxprcwvv −+−+=   (1) 

ididid vxx +=                                                                         (2) 

The first part of (1) represents the inertia of the 

previous velocity, the second part is the cognition part 

and it tells us about the personal experience of the 

particle, the third part represents the cooperation 

among particles and is therefore named as the social 

component [10]. Acceleration constants c1, c2 [11] and 

inertia weight w [12] are the predefined by the user and 

r1, r2 are the uniformly generated random numbers in 

the range of [0, 1]. The computational steps of BPSO 

algorithm are illustrated below. 

 

 

3. Proposed QI-PSO Algorithm 
 

The proposed QI-PSO algorithm is a simple and 

modified version of BPSO in which we have induced 

the concept of reproduction (borrowed from EA).  

The basic idea of this paper is loosely based on the 

concept of polygamy (still prevalent in some of the 

tribal regions of India), where the leader of the tribe is 

allowed to have more than one partner. The QI-PSO 

algorithm works in the following manner. In every 

iteration, a leader of the swarm (tribe) is selected 

according to the performance and the one giving the 

least function value is taken to be the leader of the 

tribe. Once the leader is elected, then its partners (or 

mates) are chosen randomly from the remaining 

members of the tribe. For producing a new offspring 

from the union of three parents, we have defined a new 

crossover operator. 

The quadratic crossover operator, based on quadratic 

interpolation [13], suggested in this paper is a nonlinear 

crossover operator which produces an offspring lying 

at the minimum of the quadratic curve passing through 

the three selected parents. The QI-PSO algorithm starts 

like the usual BPSO using equations (1) and (2). After 

that the crossover operator is invoked and the new 

particle is accepted in the swarm only if it is better than 

the worst particle present in the swarm. The process is 

repeated iteratively until a better solution is obtained. It 

uses a = Xmin, (the leader having minimum function 

value) and two other randomly selected particles {b, c} 

(a, b and c are different particles) from the swarm 

(tribe) to determine the coordinates of the new 

particle )~,.......,~,~(~ 21 ni
xxxx = , where  
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 The nonlinear nature of the quadratic crossover 

operator used in this work helps in finding a better 

solution in the search space. The computational steps 

of the algorithm are illustrated below. 
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Table 1. Numerical benchmark problems 

Function Dim Range 
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value 
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Remarks 1. Functions sine and cosine take arguments in radians. 

  Remarks 2. The function u used in f5 and f6 and the values yi used in f5 are all defined below. 
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Table 2. Numerical results (dimension: 30) 

BPSO QI-PSO 
Fun- 

ction 
Mean Best 

Fitness 
Diversity Stddev 

Mean Best 

Fitness 
Diversity Stddev 

f1 81.58668 1.075614e-08 35.570923 0.994954 5.948432e-11 2.354492 

f2 2.62144 1.696744e-96 7.86432 2.523604e-45 3.203878e-20 6.505185e-45 

f3 0.035265 8.958573e-08 0.029109 0.015979 5.454222e-08 0.013563 

f4 -8406.742218 4.550712e-06 595.779702 -9185.074692 4.066819e-06 760.633113 

f5 5.505851e-13 1.471375e-13 2.757006e-25 5.505851e-13 7.84124e-13 1.913863e-25 

f6 -1.147328 4.805696e-08 0.003296 -1.149339 3.503531e-08 0.003296 

f7 4.000000 7.361003e-124 4.89897 5.020939e-30 9.011109e-30 1.271869e-29 

f8 0.000244 0.003937 0.000187 0.000148 7.496987e-05 8.128944e-05 

f9 0.000000 1.678432 0.000000 0.000000 0.6674 0.000000 

f10 24.532977 0.200206 14.640568 0.454374 0.192434 0.353778 

f11 8.103896e-06 1.000654e-05 3.623224e-06 2.614209e-40 1.357432e-20 5.848717e-40 

f12 99.795759 3.655268 438.491315 77.916591 0.06907 166.009829 

f13 -15.301387 5.412045e-08 9.36361 -21.502311 6.948980e-08 3.552714e-15 

f14 3.531709 0.730954 2.484447 0.974427 0.000265 0.283325 

f15 -77.012904 1.799400e-07 1.049466 -77.201394 1.400101e-07 0.565469 

f16 -155.613795 1.508819e-08 17.664877 -179.040627 1.179486e-08 30.28809 

 
Table 3. Numerical results (dimension: 50) 

BPSO QI-PSO 
Function 

Best Fitness Diversity Best Fitness Diversity 

f1 192.383628 2.412312 4.77049e-17 2.596399e-09 

f2 5.768702e-08 1.492921e-07 2.161201e-73 1.157111e-36 

f3 0.019661 8.376331e-08 0.009850 8.484164e-08 

f4 -13790.157053 5.204209e-06 -14268.46157 6.065605e-06 

f5 2.535693 4.611654e-06 3.303511e-13 1.506118e-13 

f6 -1.150438 6.142788e-08 -1.150438 7.384989e-08 

f7 9.782400 3.776982e-15 6.552311e-51 2.937678e-50 

f8 1.514302 27.53219 0.004083 0.017026 

f9 0.000000 1.477857 0.000000 0.659437 

f10 110.563669 0.245941 0.672779 0.266817 

f11 7.462966e-01 4.993772e-05 9.431749e-71 2.867124e-36 

f12 22.191719 2.324115 10.954427 0.036353 

f13 -11.000000 5.633709e-08 -21.502311 8.306594e-08 

f14 10.012826 24.758948 3.091645 0.002222 

f15 -77.234331 2.398338e-07 -77.766863 3.100701e-07 

f16 -204.194616 1.54925e-08 -239.204493 1.853805e-08 

4. Experimental Settings 
 

In order to make a fair comparison of BPSO and QI-

PSO, we fixed the same seed for random number 

generation so that the initial swarm population is same 

for both the algorithms. The number of particles in the 

swarm (swarm size) is taken as 30. A linearly 

decreasing inertia weight is used which starts at 0.9 and 

ends at 0.4, with the user defined parameters c1=2.0 

and c2=2.0.  

We have also evaluated diversity, an important 

aspect for checking the efficiency of the swarm, for 
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both the algorithms. The diversity measure [14] of the 

swarm is taken as:  
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For each algorithm, the maximum number of iterations 

allowed was set to 30,000 for 30 dimensions and 

100,000 for 50 dimensions. For 30 dimensions, a total 

of 10 runs for each experimental setting were 

conducted and the average fitness of the best solutions 

throughout the run was recorded. For 50 dimensions 

only a single run was performed and the best fitness 

was recorded. Each algorithm was tested with all of the 

numerical benchmark problems reported in Table 1. 

 

5. Experimental Results 
 

In order to check the compatibility of the proposed 

QI-PSO algorithm we have tested it on a suite of 16 

benchmark problems given in Table 1. The test bed 

comprises of a variety of problems ranging from a 

simple spherical function to highly multimodal 

functions and also a noisy function (with changing 

optima). In Table 2, we have shown the results of 

problems with dimension 30 and in Table 3, are given 

the results of all problems with increased dimension 50 

in terms of best fitness value and diversity. In Table 4 

and 5, we have shown the performance improvement of 

QI-PSO with BPSO. Figures 1 - 4 show the mean best 

fitness curves for the first four benchmark problems. 

From the numerical results presented in Tables 2, 3, 

4 and 5, it is evident that QI-PSO is a clear winner. It 

gave a better performance in comparison to the BPSO 

algorithm for problems with dimension 30 in all the 

cases except for function f5 and f9. In this case both 

BPSO and QI-PSO performs the same. However it is 

quite interesting to note that QI-PSO gave a much 

better performance for the same function (f5) when the 

dimension is increased to 50. In terms of percentage of 

improvement (of average fitness function value), the 

results favor QI-PSO particularly for higher dimension 

(50). 

 

6. Conclusions 
 

In this we proposed a simple and modified version of 

BPSO by incorporating a newly defined crossover 

operator in it. The empirical results show that the 

proposed algorithm is quite competent for solving 

problems of dimensions up to 50.  

Metaphorically, this article uses the concept of 

polygamy among various Indian tribes, where the 

leader of the tribe keeps two partners to produce an 

offspring.  

However, we would also like to say that since the 

results quoted here are based on the empirical study 

only and we are yet to explore theoretical relevance of 

the proposed QI-PSO, making any concrete judgment 

does not sound fair. Moreover the platform on which 

we have conducted the experiments is quite narrow. 

We are working on the problems with higher 

dimensions (100 and above) and in future we would try 

more complex optimization problems particularly 

problems in dynamic environment. 

    

Table 4. Improvement (%) of QI-PSO in comparison 

with BPSO (dimension: 30) 
 

Function 
Improvement 

 (%) 
Function 

Improvement 

 (%) 

f1 98.780495 f9 0.000000 

f2 100 f10 98.147905 

f3 54.688785 f11 100 

f4 9.258432 f12 21.923946 

f5 0.000000 f13 40.525241 

f6 0.175277 f14 72.409193 

f7 100 f15 0.244751 

f8 39.344262 f16 15.054469 

 

Table 5. Improvement (%) of QI-PSO in comparison 

with BPSO (dimension: 50) 
 

Function 
Improvement 

 (%) 
Function 

Improvement 

 (%)  

f1 100 f9 0.000000 

f2 100 f10 99.391501 

f3 49.900819 f11 100 

f4 3.468449 f12 50.637321 

f5 100 f13 95.475555 

f6 0.000000 f14 69.123153 

f7 100 f15 0.689502 

f8 110.877709 f16 17.145348 
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Figure 1. Performance comparison for f1 

 
Figure 2. Performance comparison for f2 

 
Figure 3. Performance comparison for f3 

 
Figure 4. Performance comparison for f4 
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