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Abstract

The multiobjective Quadratic Assignment Problem
(mQAP) is considered as one of the hardest optimization
problems but with many real-world applications. Since it
may not be possible to simply weight the importance of each
flow for the mQAP, it is best to use Pareto optimization to
obtain the Pareto front or an approximation of it. Although
Particle Swarm Optimization (PSO) algorithm has exhib-
ited good performance across a wide range of application
problems, research on mQAP has not much been investi-
gated. This paper introduces a fuzzy particle swarm algo-
rithm to handle the Multiobjective Quadratic Assignment
Problem (mQAP). In the fuzzy scheme, the representations
of the position and velocity of the particles in the conven-
tional PSO is extended from the real vectors to fuzzy matri-
ces. A new mapping is introduced between the particles in
the swarm and the problem space in an efficient way. We
evaluated the performance of the proposed approach. Em-
pirical results illustrate that the approach can be applied
for solving mQAP’s very effectively.

1 Introduction

The scalar quadratic assignment problem (QAP) was in-
troduced in 1957 by Koopmans and Beckmann [1]. In
2002, Knowles and Corne extended the QAP to be multi-
objective and it became the multiobjective quadratic assign-

ment problem [2]. Since then, it has several good practi-
cal applications in diverse areas, such as some layout prob-
lems, network design problems, and communication prob-
lems [3, 4, 5]. The QAP is a NP-hard optimization prob-
lem and instances of size larger than 20 are considered in-
tractable. A literature review reveals the use of stochastic
local search, genetic algorithms (GA) and ant colony opti-
mization to find some good solutions within a reasonable
amount of time.

Particle swarm optimization (PSO) incorporates swarm-
ing behaviors observed in flocks of birds, schools of fish,
or swarms of bees, and even human social behavior, from
which the swarm intelligence paradigm has emerged [6, 8].
The main strength of PSO is its fast convergence, which
compares favorably with many global optimization algo-
rithms [9]. However, research for solving the mQAPs us-
ing PSO approach has not much been investigated. In this
paper, we make an attempt to solve the problem using a
discrete particle swarm optimization approach based on a
fuzzy scheme and a kind of matrix mapping, which help
us to deal with the constraints in the problems and provide
more diverse solutions for the problems.

The rest of the paper is organized as follows. We formu-
late the quadratic assignment problem and multiobjective
quadratic assignment problem in Section 2. The proposed
fuzzy particle swarm approach for mQAP is presented in
Section 3. Experiment, results and discussions are given in
Section 4 followed by some conclusions in the last Section.
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2 QAP and mQAP

The QAP can be described as the problem of assigning
a set of facilities to a set of locations with given distances
between the locations and given flows between the facili-
ties. The goal then is to place the facilities on locations in
such a way that the sum of the product between flows and
distances is minimal [10]. More formally, given n facilities
{F1, F2, · · · , Fn} and n locations {L1, L2, · · · , Ln}, two
n × n matrices FM = [fij ] and DM = [drs], where fij

is the flow between facilities Fi and Fj and drs is the dis-
tance between locations Lr and Ls, the QAP can be stated
as follows:

min
π∈P (n)

C(π) =
n∑

i=1

n∑

j=1

fijdπiπj (1)

where P (n) is the set of all permutations (correspond-
ing to the assignment solutions) of the set of integers
{1, 2, · · · , n}, and πi gives the location of facility Fi in the
current solution π ∈ P (n). Here fijdπiπj

describes the cost
contribution of simultaneously assigning facility Fi to loca-
tion πi and facility Fj to location πj . It is to be noted that
the number of facilities (n) is assumed to be the same as the
number of locations. In other words, one facility could be
assigned to only one location, and one location could be as-
signed to only one facility in a feasible assignment solution.

The term quadratic stems from the formulation of the
QAP as an integer optimization problem with a quadratic
objective function [10]. Let bij be a binary variable which
takes value 1 if facility Fi is assigned to location Lj and 0
otherwise. Then the problem can be re-formulated as:

min
n∑

i=1

n∑

j=1

n∑
r=1

n∑
s=1

fijdrsbirbjs (2)

s.t.

bij ∈ {0, 1}, i = 1, 2, · · · , n, j = 1, 2, · · · , n; (3)

n∑

i=1

bij = 1, j = 1, 2, · · · , n; (4)

n∑

j=1

bij = 1, i = 1, 2, · · · , n. (5)

Knowles and Corne [2] presented another QAP varia-
tion (mQAP) considering several flow and distance matri-
ces. For the allocation of facilities in hospitals, it is desired
to minimize the products of the flows by the distances be-
tween doctors and patients, and between nurses and medical
equipment simultaneously. Each of the matrices describing
these flows is very different and it may not be possible to

simply weight the importance of each flow. It can be mod-
eled using QAP but as a multiobjective problem. Formally,
it can be defined mathematically as:

min
π∈P (n)

~C(π) = {C1(π), C2(π), · · · , Cm(π)} (6)

where

Ck(π) =
n∑

i=1

n∑

j=1

fk
ijdπiπj

, 1 ≤ k ≤ m. (7)

In this last constraint, fk
ij denotes the kth flow between i-

and j-facilities, others are similar to the above definition in
the QAP.

Since it may not be possible to simply weigh the im-
portance of each flow for the mQAP, the solution usually
must be non-dominated and it is impossible to improve one
component of the solution without worsening the value of
at least one other component of the solution [2]. We must
deal with generating the set of non-dominated solutions for
the problems having more than one objective. So the Pareto
optimization is used to obtain the Pareto front or an approx-
imation of it.

3 A Fuzzy Particle Swarm Approach for
mQAP

The classical particle swarm model consists of a swarm
of particles, which are initialized with a population of ran-
dom candidate solutions. They move iteratively through the
d-dimension problem space to search new solutions, where
the fitness f can be calculated as the certain quality mea-
sure. Each particle has a position represented by a position-
vector ~xi (i is the index of the particle), and a velocity rep-
resented by a velocity-vector ~vi. Each particle remembers
its own best position so far in a vector ~x#

i , and its j-th di-
mensional value is x#

ij . The best position-vector among the
swarm so far is then stored in a vector ~x∗, and its j-th di-
mensional value is x∗j . During the iteration time t, the up-
date of the velocity from the previous velocity to the new
velocity is determined by Eq.(8). The new position is then
determined by the sum of the previous position and the new
velocity by Eq.(9).

vij(t + 1) = wvij(t) + c1r1(x
#
ij(t)− xij(t))

+ c2r2(x∗j (t)− xij(t))
(8)

xij(t + 1) = xij(t) + vij(t + 1) (9)

Where r1 and r2 are the random numbers in the interval
[0,1]. c1 is a positive constant, called as coefficient of the
self-recognition component, c2 is a positive constant, called
as coefficient of the social component. The variable w is



called as the inertia factor, which value is typically setup to
vary linearly from 1 to near 0 during the iterated process-
ing. From Eq.(8), a particle decides where to move next,
considering its current state, its own experience, which is
the memory of its best past position, and the experience of
its most successful particle in the swarm.

For applying the particle swarm algorithm successfully
for a problem, one of the key issues is how to map the prob-
lem solution to the particle space, which directly affects its
feasibility and performance. In a “crisp” particle swarm
model for the assignment problem, it would trend to assign
many facilities to the same location or assign many loca-
tions to the same facility. This kind of assignment would
be unfeasible. In this section, a fuzzy matrix is introduced
to represent the quadratic assignment problem [11]. Then
a PSO approach to the problem space mapping is depicted
for the multiobjective quadratic assignment problem. Sup-
pose F = {F1, F2, · · · , Fn}, L = {L1, L2, · · · , Ln}, then
the fuzzy assignment relation from F to L is expressed as
follows:

A =




a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann




Here aij represents the degree of membership of the j-th
element Fj in domain F and the i-th element Li in domain
L to relation A. In the fuzzy relation matrix A between F
and L, the elements are subject to the following constraints:

aij = µR(Fj , Li), i = 1, 2, · · · , n, j = 1, 2, · · · , n.
(10)

µR is the membership function, the value of aij means the
degree of membership that the facility Fj would be assigned
to the location Li in the feasible assignment solution. In the
quadratic assignment problem, the elements of the solution
must satisfy the following conditions:

aij ∈ [0, 1], i = 1, 2, · · · , n, j = 1, 2, · · · , n; (11)

n∑

i=1

aij = 1, j = 1, 2, · · · , n; (12)

n∑

j=1

aij = 1, i = 1, 2, · · · , n. (13)

According to fuzzy matrix representation of the
quadratic assignment problem, the position X and velocity
V in the particle swarm are re-defined as follows:

X =




x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

. . .
...

xn1 xn2 · · · xnn




V =




v11 v12 · · · v1n

v21 v22 · · · v2n

...
...

. . .
...

vn1 vn2 · · · vnn




The elements in the matrix X above have the same property
as Eq.(10). Accordingly, the elements of the matrix X must
satisfy the following conditions:

xij ∈ [0, 1], i = 1, 2, · · · , n, j = 1, 2, · · · , n; (14)

n∑

i=1

xij = 1, j = 1, 2, · · · , n; (15)

n∑

j=1

xij = 1, i = 1, 2, · · · , n. (16)

Since the position and velocity in the new fuzzy particle
swarm model have been transformed to the form of matri-
ces, they are updated by the new Eqs.(17) and (18) by ap-
plying matrix operations.

V (t + 1) = w ⊗ V (t)⊕ (c1r1)⊗ (X#(t)ªX(t))
⊕ (c2r2)⊗ (X∗(t)ªX(t))

(17)

X(t + 1) = X(t)⊕ V (t + 1) (18)

The position matrix may violate the constraints (14), (15)
and (16) after some iterations, thus it is necessary to nor-
malize the position matrix. First we make all the negative
elements in the matrix to become zero. If all elements in
a column of the matrix are zero, they need be re-evaluated
using a series of random numbers within the interval [0,1].
Then the matrix undergoes normalization, which makes all
the rows and the columns sum up to 1.

Since the position matrix indicates the potential assign-
ment solution, we can “defuzzify” it to the feasible solution.
We choose the element, which has the maximum value in
the column, then tag it as “1”, and other numbers in the col-
umn and row are set as “0” in the assigning matrix. After
all the columns and rows have been processed, we get the
assignment solution without violating the constraints (14),
(15) and (16), and then calculate the assignment cost of the
solution.

In order to apply the PSO strategy for solving multi-
objective quadratic assignment problems, the original
scheme has to be modified. The algorithm need to search
a set of different solutions (the so-called Pareto optimal set)
instead of a single solution (as in global optimization) [13].
Based on the fuzzy particle swarm mapping, we apply mul-
tiobjective particle swarm optimization algorithm [12] to
search toward the true Pareto front (non-dominated solu-
tions) or approximate the Pareto optimal set for the mQAPs.
Instead of the single objective particle swarm optimization,



our algorithm has a solution pool to store the non-dominated
solutions found by searching up to time t. Any of the so-
lutions in the pool can be used as the global best particle
to guide other particles in the swarm during the iterated
process. The plot of the objective functions whose non-
dominated solutions are in the solution pool would make up
of the Pareto front. The pseudo-code for the multi-objective
particle swarm optimization algorithm is illustrated in Al-
gorithm 1.

Algorithm 1 Multi-Objective Particle Swarm Algorithm
01. Begin
02. Parameter settings and initialize swarm
03. Evaluation
04. Archive the top best into leader pool
05. g = 1
06. While (the end criterion is not met) do
07. For each particle
08. Select leader in the archiving pool
09. Update velocity
10. Update position
11. Mutation periodically
12. Evaluation
13. Update pbest
14. EndFor
15. Crowding the leaders
16. Update the top best into leader pool
17. g + +
18. End While
19. End

4 Experiment and Results

To illustrate the effectiveness and performance of the
particle swarm optimization algorithm, we consider the in-
stances from Knowles’s datasets1. In our experiments, spe-
cific parameter settings for the algorithm are described in
Table 1, where D is the dimension of search space. The in-
stances and associated Pareto fronts are provided in Table 2
and Figures 1 to 10. It is noted that all the Pareto fronts are
well-distributed, since our fuzzy scheme and matrix map-
ping provide higher probability of generating very diverse
solutions for the problems during the defuzzification pro-
cess from the particles’ positions to the solutions.

5 Conclusions

In this paper, we presented a fuzzy particle swarm algo-
rithm to handle the mQAP. In the fuzzy scheme, the rep-
resentations of the position and velocity of the particles in

1http://dbkgroup.org/knowles/mQAP

Table 1. Parameter settings for the algorithm.

Parameter name Parameter value
Swarm size int(10 + 2sqrt(D))
Self coefficient c1 0.5 + log(2)
Social coefficient c2 0.5 + log(2)
Inertia weight w 0.91
Maximum Iteration 2D

Table 2. Test Suite used.

Instance Instance Loc. Flow mat. Pareto
name category no. no. front
KC10-2fl-1rl Real-like 10 2 Figure 1
KC10-2fl-3rl Real-like 10 2 Figure 2
KC10-2fl-5rl Real-like 10 2 Figure 3
KC20-2fl-2rl Real-like 20 2 Figure 4
KC20-2fl-3rl Real-like 20 2 Figure 5
KC20-2fl-3uni Uniform 20 2 Figure 6
KC20-2fl-4rl Real-like 20 2 Figure 7
KC20-2fl-5rl Real-like 20 2 Figure 8
KC30-3fl-1rl Real-like 30 3 Figure 9
KC30-3fl-2rl Real-like 30 3 Figure 10
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Figure 1. Pareto front for KC10-2fl-1rl.
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Figure 2. Pareto front for KC10-2fl-3rl.
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Figure 3. Pareto front for KC10-2fl-5rl.
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Figure 4. Pareto front for KC20-2fl-2rl.
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Figure 5. Pareto front for KC20-2fl-3rl.
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Figure 6. Pareto front for KC20-2fl-3uni.
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Figure 7. Pareto front for KC20-2fl-4rl.
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Figure 8. Pareto front for KC20-2fl-5rl.

Figure 9. Pareto front for KC30-3fl-1rl.



Figure 10. Pareto front for KC30-3fl-2rl.

the conventional PSO is extended from the real vectors to
fuzzy matrices. We illustrated our approach by solving four
benchmark mQAP instances and their Pareto fronts were
provided. The Pareto fronts are well-distributed. Empirical
results illustrate that the approach can be applied for solving
mQAPs very effectively.

Our future work is targeted to generate more mQAP in-
stances and involve more heuristics including hybrid ap-
proaches [14], [15].

Acknowledgments

This work is supported partly by NSFC (60573087) and
MOST (2005CB321904).

References

[1] T. Koopmans and M. Beckman. Assignment Prob-
lems And The Location of Economic Activities. IEEE
Econometrica, 25, pp. 53-76, 1957.

[2] J. Knowles and D. Corne. Towards Landscape Analy-
ses To Inform The Design of A Hybrid Local Search
for The Multiobjective Quadratic Assignment Prob-
lem. Soft Computing Systems: Design, Management
and Applications, pp. 271-279. IOS Press, Amster-
dam, 2002.

[3] R. Day and G. Lamont. Multiobjective Quadratic
Assignment Problem Solved by an Explicit Build-
ing Block Search Algorithm – MOMGA-IIa. Lecture
Notes in Computer Science (EvoCOP 2005), 3448, pp.
91-100, 2005.

[4] E. Loiola, N.M. Maia de Abreu, P.O. Boaventura-
Netto, and T. Querido. A Survey For The Quadratic
Assignment Problem. European Journal of Opera-
tional Research, 176, pp. 657-690, 2007.

[5] J. Knowles and D. Corne. Particle Swarm Optimiza-
tion Versus Genetic Algorithms For phased Array
Synthesis. In Proceedings of the Second International
Conference Evolutionary Multi-Criterion Optimiza-
tion, pp. 295-310, 2003.

[6] J. Kennedy and R. Eberhart. Swarm Intelligence, Mor-
gan Kaufmann, CA, 2001.

[7] C. Grosan and A. Abraham, Stigmergic Optimization:
Inspiration, Technologies and Perspectives, Studies
in Computational Intelligence, Springer Verlag, Ger-
many, pp. 1-24, 2006.

[8] H. Liu, A. Abraham, and M. Clerc. Chaotic Dynamic
Characteristics in Swarm Intelligence. Applied Soft
Computing Journal, 7, pp. 1019-1026, 2007.

[9] A. Abraham, H. Guo, and H. Liu. Swarm Intelligence:
Foundations, Perspectives and Applications. In Stud-
ies in Computational Intelligence, N. Nedjah and L.
Mourelle (Eds.), pp. 3-25. Springer, 2006.

[10] T. Stützle. Iterated Local Search for the Quadratic As-
signment Problem. European Journal of Operational
Research, 174, pp. 1519–1539, 2006.

[11] W. Pang, K. Wang, C. Zhou, and L. Dong. Fuzzy Dis-
crete Particle Swarm Optimization For Solving Trav-
eling Salesman Problem. In Proceedings of the Fourth
International Conference on Computer and Informa-
tion Technology, pp. 796-800, IEEE CS Press, 2004.

[12] C. Coello, G. Pulido, and M. Salazar. Handling Mul-
tiobjectives With Particle Swarm Optimization. IEEE
Transactions on Evolutionary Computation, 8, pp.
256–279, 2004.

[13] A. Abraham, L. Jain and R. Goldberg (Eds.), Evolu-
tionary Multiobjective Optimization: Theoretical Ad-
vances and Applications, Springer Verlag, London,
ISBN 1852337877, 12 Chapters, 2005.

[14] C. Grosan, A. Abraham and M. Nicoara, Search Opti-
mization Using Hybrid Particle Sub-Swarms and Evo-
lutionary Algorithms, International Journal of Simula-
tion Systems, Science and Technology, UK, Volume 6,
Nos. 10 and 11, pp. 60-79, 2005.

[15] C. Grosan, Improving the performances of evolution-
ary algorithms for the multiobjective 0/1 knapsack
problem using epsilon -dominance. Congress on Evo-
lutionary Computation (CEC), G. Greenwood et al.
(Eds.), IEEE Press, pp. 1958-1963, Portland, USA,
2004.


